Epoxidation of styrene by anhydrous H2O2 over TS-1 and γ-Al2O3 catalysts: effect of reaction water, poisoning of acid sites and presence of base in the reaction mixture

Choudhary, V. R. ; Patil, N. S. ; Bhargava, S. K. (2003) Epoxidation of styrene by anhydrous H2O2 over TS-1 and γ-Al2O3 catalysts: effect of reaction water, poisoning of acid sites and presence of base in the reaction mixture Catalysis Letters, 89 (1-2). pp. 55-62. ISSN 1011-372X

Full text not available from this repository.

Official URL: http://www.springerlink.com/content/ng5rt710gk3666...

Related URL: http://dx.doi.org/10.1023/A:1024715325270

Abstract

The styrene conversion and product (viz. styrene oxide, phenyl acetaldehyde, benzaldehyde) selectivity in the liquid-phase epoxidation of styrene by H2O2 (H2O2/styrene = 2) over TS-1 (Si/Ti = 80) and γ-Al2O3 are strongly influenced by the presence of water and/or base (viz. urea and pyridine) in the reaction mixture. The TS-1 showed high styrene conversion activity but no epoxide selectivity in the absence of any base. When anhydrous H2O2 (24% H2O2 in ethyl acetate), with the continuous removal of the reaction water (using the DeanStark trap), was used instead of 50% aqueous H2O2, both the conversion and epoxide yield are increased drastically for the γ-Al2O3, whereas for the TS-1, the increase in the conversion was quite small and there was also no improvement in the epoxide selectivity and/or yield. However, when urea or pyridine was added in the reaction mixture, the epoxide selectivity for both the catalysts was increased depending on the concentration of the base added; the increase in the selectivity was very large for the TS-1 but small for the γ-Al2O3. Poisoning of the acid sites of the γ-Al2O3 by the chemisorbed ammonia or pyridine (at 100 °C) caused a small decrease in the conversion, but it also caused a large decrease in the epoxide selectivity. However, the pyridine poisoning of the TS-1 caused a little beneficial effect, a small increase in the epoxide selectivity. The ammonia poisoning of the TS-1, however, resulted in a small decrease in the conversion with no improvement in the epoxide selectivity. As compared to the TS-1, the γ-Al2O3 catalyst showed a much better performance in the epoxidation by anhydrous H2O2 with the continuous removal of the reaction water. However, the reaction water, if not removed continuously, is detrimental to the γ-Al2O3, causing a large decrease in the catalytic activity and selectivity for styrene oxide but an increase in the selectivity for benzaldehyde.

Item Type:Article
Source:Copyright of this article belongs to Springer-Verlag.
Keywords:Epoxidation of Styrene; Anhydrous Hydrogen Peroxide; TS-1 Catalyst; γ-Al2O3 Catalyst; Catalyst Poisoning of Acid Sites
ID Code:10497
Deposited On:03 Nov 2010 11:43
Last Modified:28 May 2011 11:19

Repository Staff Only: item control page