Mandal, Gautam ; Nayak, Pranjal (2016) Revisiting AdS/CFT at a finite radial cut-off Journal of High Energy Physics, 2016 . Article ID 125. ISSN 1029-8479
|
PDF
1MB |
Official URL: https://link.springer.com/article/10.1007%2FJHEP12...
Related URL: http://dx.doi.org/10.1007/JHEP12(2016)125
Abstract
We revisit AdS/CFT at finite radial cut-off, specifically in the context of double trace perturbations, 𝕆n = 𝕆(x)(∂2)n𝒪(x), with arbitrary n. As well-known, the standard GKPW prescription, applied to a finite radial cut-off, leads to contact terms in correlators. de Haro et al (arXiv:hep-th/0002230) introduced bulk counterterms to remove these. However, this prescription yields additional terms in the correlator corresponding to spurious double trace deformations. Further, if we view GKPW prescription coupled with the prescription in arXiv:hep-th/0002230, in terms of a boundary wavefunction, we find that it is incompatible with radial Schrodinger evolution (in the spirit of holographic Wilsonian RG). We consider a more general wavefunction satisfying the Schrodinger equation, and find that generically such wavefunctions generate both (a) double trace deformations and (b) contact terms. However, we find that there exist special choices of these wavefunctions, amounting to a new AdS/CFT prescription at a finite cut-off, so that both (a) and (b) are removed and we obtain a pure power law behaviour for the correlator. We compare these special wavefunctions with a specific RG scheme in field theory. We give a geometric interpretation of these wavefunctions; these correspond to some specific smearing of boundary points in the Witten diagrams. We present a comprehensive calculation of exact double-trace beta-functions for all couplings 𝕆n and match with a holographic computation using the method described above. The matching works with a mapping between the field theory and bulk couplings; such a map is highly constrained because the beta-functions are quadratic and exact on both sides. We generalize standard double-trace Wilson-Fisher flow to the space of the infinite number of couplings.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Springer Verlag. |
Keywords: | AdS-CFT Correspondence; Renormalization Group |
ID Code: | 103506 |
Deposited On: | 26 Dec 2017 11:16 |
Last Modified: | 26 Dec 2017 11:16 |
Repository Staff Only: item control page