Heat shock factor binding in Alu repeats expands its involvement in stress through an antisense mechanism

Pandey, Rajesh ; Mandal, Amit K. ; Jha, Vineet ; Mukerji, Mitali (2011) Heat shock factor binding in Alu repeats expands its involvement in stress through an antisense mechanism Genome Biology, 12 (11). R117, 17 pages. ISSN 1465-6906

[img]
Preview
PDF
1MB

Official URL: https://genomebiology.biomedcentral.com/articles/1...

Related URL: http://dx.doi.org/10.1186/gb-2011-12-11-r117

Abstract

Background: Alu RNAs are present at elevated levels in stress conditions and, consequently, Alu repeats are increasingly being associated with the physiological stress response. Alu repeats are known to harbor transcription factor binding sites that modulate RNA pol II transcription and Alu RNAs act as transcriptional co-repressors through pol II binding in the promoter regions of heat shock responsive genes. An observation of a putative heat shock factor (HSF) binding site in Alu led us to explore whether, through HSF binding, these elements could further contribute to the heat shock response repertoire. Results: Alu density was significantly enriched in transcripts that are down-regulated following heat shock recovery in HeLa cells. ChIP analysis confirmed HSF binding to a consensus motif exhibiting positional conservation across various Alu subfamilies, and reporter constructs demonstrated a sequence-specific two-fold induction of these sites in response to heat shock. These motifs were over-represented in the genic regions of down-regulated transcripts in antisense oriented Alus. Affymetrix Exon arrays detected antisense signals in a significant fraction of the down-regulated transcripts, 50% of which harbored HSF sites within 5 kb. siRNA knockdown of the selected antisense transcripts led to the over-expression, following heat shock, of their corresponding down-regulated transcripts. The antisense transcripts were significantly enriched in processes related to RNA pol III transcription and the TFIIIC complex. Conclusions: We demonstrate a non-random presence of Alu repeats harboring HSF sites in heat shock responsive transcripts. This presence underlies an antisense-mediated mechanism that represents a novel component of Alu and HSF involvement in the heat shock response.

Item Type:Article
Source:Copyright of this article belongs to BioMed Central.
ID Code:103443
Deposited On:13 Mar 2017 10:27
Last Modified:05 Jul 2017 12:43

Repository Staff Only: item control page