Spontaneous breaking of time-reversal symmetry in strongly interacting two-dimensional electron layers in silicon and germanium

Shamim, S. ; Mahapatra, S. ; Scappucci, G. ; Klesse, W. M. ; Simmons, M. Y. ; Ghosh, A. (2014) Spontaneous breaking of time-reversal symmetry in strongly interacting two-dimensional electron layers in silicon and germanium Physical Review Letters, 112 (23). Article ID 236602. ISSN 0031-9007

Full text not available from this repository.

Official URL: http://journals.aps.org/prl/abstract/10.1103/PhysR...

Related URL: http://dx.doi.org/10.1103/PhysRevLett.112.236602

Abstract

We report experimental evidence of a remarkable spontaneous time-reversal symmetry breaking in two-dimensional electron systems formed by atomically confined doping of Phosphorus (P) atoms inside bulk crystalline Silicon (Si) and Germanium (Ge). Weak localization corrections to the conductivity and the universal conductance fluctuations were both found to decrease rapidly with decreasing doping in the Si:P and Ge:P delta layers, suggesting an effect driven by Coulomb interactions. In-plane magnetotransport measurements indicate the presence of intrinsic local spin fluctuations at low doping, providing a microscopic mechanism for spontaneous lifting of the time-reversal symmetry. Our experiments suggest the emergence of a new many-body quantum state when two-dimensional electrons are confined to narrow half-filled impurity bands.

Item Type:Article
Source:Copyright of this article belongs to American Physical Society.
ID Code:101486
Deposited On:01 Feb 2018 10:03
Last Modified:01 Feb 2018 10:03

Repository Staff Only: item control page