Recovering hidden quanta of Cu2+-doped ZnS quantum dots in reductive environment

Begum, Raihana ; Sahoo, Amaresh Kumar ; Ghosh, Siddhartha Sankar ; Chattopadhyay, Arun (2014) Recovering hidden quanta of Cu2+-doped ZnS quantum dots in reductive environment Nanoscale, 6 (2). pp. 953-961. ISSN 2040-3364

Full text not available from this repository.

Official URL: http://pubs.rsc.org/en/Content/ArticleLanding/2014...

Related URL: http://dx.doi.org/10.1039/C3NR05280J

Abstract

We report that photoluminescence of doped quantum dots (Qdots)-which was otherwise lost in the oxidized form of the dopant-could be recovered in chemical or cellular reducing environment. For example, as-synthesized Cu2+-doped zinc sulfide (ZnS) Qdots in water medium showed weak emission with a peak at 420 nm, following excitation with UV light (320 nm). However, addition of reducing agent led to the appearance of green emission with a peak at 540 nm and with quantum yield as high as 10%, in addition to the weak peak now appearing as a shoulder. The emission disappeared in the presence of an oxidizing agent or with time under ambient conditions. X-Ray photoelectron spectroscopic (XPS) and electron spin resonance (ESR) measurements suggested the presence of Cu2+ in the as-synthesized Qdots, while formation of its reduced form was indicated (by ESR results) following treatment with a reducing agent. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) studies confirmed the formation of ZnS nanocrystals, the size and shape of which did not undergo any change in the presence of a reducing or oxidizing agent. Nanoparticulate forms of the Qdots and chitosan (a biopolymer) composite exhibited similar emission characteristics. Interestingly, when mammalian cancer cells or non-cancerous cells were treated with the composite nanoparticles (NPs), characteristic green fluorescence was observed. Further, the intensity of the fluorescence diminished when the cells were treated later with pyrogallol-a known reactive oxygen species generator. Overall, the results indicated a new way of probing the reducing nature of mammalian cells using the emission properties of the Qdot based on the redox state of its dopant.

Item Type:Article
Source:Copyright of this article belongs to Royal Society of Chemistry.
ID Code:100982
Deposited On:20 Dec 2016 05:16
Last Modified:20 Dec 2016 05:18

Repository Staff Only: item control page