A bolaamphiphilic amino acid appended photo-switching supramolecular gel and tuning of photo-switching behaviour

Roy, Subhasish ; Maiti, Dibakar Kumar ; Panigrahi, Shrabani ; Basak, Durga ; Banerjee, Arindam (2014) A bolaamphiphilic amino acid appended photo-switching supramolecular gel and tuning of photo-switching behaviour Physical Chemistry Chemical Physics, 16 (13). pp. 6041-6049. ISSN 1463-9076

Full text not available from this repository.

Official URL: http://pubs.rsc.org/en/Content/ArticleLanding/2014...

Related URL: http://dx.doi.org/10.1039/C3CP55108C

Abstract

Self-assembled bolaamphiphilic perylene bisimide (PBI) containing an amino acid appended fluorescent semiconducting soft material (hydrogel) has been discovered at physiological pH. This new organic material based on self-assembled perylene bisimide appended amino acid-based bolaamphiphile (PBI-C11-Y) has been well characterized using various techniques including UV-Vis, fluorescence, X-ray diffraction, FT-IR, transmission electron microscopic (TEM) and atomic force microscopic (AFM) studies. Interestingly, the UV-Vis absorption properties of the soft-material are dependent on the pH of the medium. This PBI-conjugated amino acid appended gelator molecule contains a centrally located perylene bisimide moiety as well as an aromatic amino acid L-tyrosine at the side chains, which are extremely useful for interacting with the delocalized large π-surface of GO (graphene oxide) or RGO (reduced graphene oxide) to form a GO/RGO containing hybrid hydrogel. Graphene oxide and reduced graphene oxide have been successfully incorporated into the nanofibrillar network structure of the PBI-C11-Y based gel to make nanohybrid systems. The I–V profile of the semiconducting photo-responsive soft-material of the PBI-C11-Y has been successfully tuned upon the incorporation of GO and RGO within the gel-based soft material. This PBI-C11-Y xerogel based structure shows photo-switching behaviour upon exposure to white light. The ON/OFF ratio of the PBI-C11-Y can be modulated upon the inclusion of GO and RGO within the hydrogel matrix. Furthermore, the OFF state stability of the PBI-C11-Y xerogel material has been increased upon the inclusion of RGO. Regulation of the photo-switching behaviour of the PBI-C11-Y based xerogel holds promise for making PBI-containing amino acid appended biomaterials with interesting properties in future.

Item Type:Article
Source:Copyright of this article belongs to Royal Society of Chemistry.
ID Code:99702
Deposited On:28 Oct 2016 07:12
Last Modified:28 Oct 2016 07:12

Repository Staff Only: item control page