Determinants outside the DevR C-terminal domain are essential for cooperativity and robust activation of dormancy genes in Mycobacterium tuberculosis

Gautam, Uma Shankar ; Chauhan, Santosh ; Tyagi, Jaya Sivaswami (2011) Determinants outside the DevR C-terminal domain are essential for cooperativity and robust activation of dormancy genes in Mycobacterium tuberculosis PLoS One, 6 (1). e16500. ISSN 1932-6203

[img]
Preview
PDF - Publisher Version
1MB

Official URL: http://www.plosone.org/article/info%3Adoi%2F10.137...

Related URL: http://dx.doi.org/10.1371/journal.pone.0016500

Abstract

Background: DevR (also called as DosR) is a two-domain response regulator of the NarL subfamily that controls dormancy adaptation of Mycobacterium tuberculosis (M. tb). In response to inducing signals such as hypoxia and ascorbic acid, the N-terminal receiver domain of DevR (DevRN) is phosphorylated at Asp54. This results in DevR binding to DNA via its C-terminal domain (DevRC) and subsequent induction of the DevR regulon. The mechanism of phosphorylation-mediated activation is not known. The present study was designed to understand the role of the N- and C-terminal domains of DevR in DevR regulon genes activation. Methodology/Principal Findings: Towards deciphering the activation mechanism of DevR, we compared the DNA binding properties of DevRC and DevR and correlated the findings with their ability to activate gene expression. We show that isolated DevRC can interact with DNA, but only with the high affinity site of a representative target promoter. Therefore, one role of DevRN is to mask the intrinsic DNA binding function of DevRC. However, unlike phosphorylated DevR, isolated DevRC does not interact with the adjacent low affinity binding site suggesting that a second role of DevRN is in cooperative binding to the secondary site. Transcriptional analysis shows that consistent with unmasking of its DNA binding property, DevRC supports the aerobic induction, albeit feebly, of DevR regulon genes but is unable to sustain gene activation during hypoxia. Conclusions/Significance: DevR is a unique response regulator that employs a dual activation mechanism including relief of inhibition and cooperative interaction with binding sites. Importantly, both these functions reside outside the C-terminal domain. DevRN is also essential for stabilizing DevR and sustaining autoregulation under hypoxia. Hence, both domains of DevR are required for robust transcription activation.

Item Type:Article
Source:Copyright of this article belongs to Public Library of Science.
ID Code:95574
Deposited On:11 Feb 2013 09:27
Last Modified:19 May 2016 08:10

Repository Staff Only: item control page