Analysis of selection algorithms: a markov chain approach

Chakraborty, Uday Kumar ; Deb, Kalyanmoy ; Chakraborty, Mandira (1996) Analysis of selection algorithms: a markov chain approach Evolutionary Computation, 4 (2). pp. 133-167. ISSN 1063-6560

Full text not available from this repository.

Official URL:

Related URL:


A Markov chain framework is developed for analyzing a wide variety of selection techniques used in genetic algorithms (GAs) and evolution strategies (ESs). Specifically, we consider linear ranking selection, probabilistic binary tournament selection, deterministic s-ary (s = 3,4, ...) tournament selection, fitness-proportionate selection, selection in Whitley's GENITOR, selection in (μ , λ )-ES, selection in (μ + λ )-ES, (μ , λ )-linear ranking selection in GAs, (μ + λ )-linear ranking selection in GAs, and selection in Eshelman's CHC algorithm. The analysis enables us to compare and contrast the various selection algorithms with respect to several performance measures based on the probability of takeover. Our analysis is exact-we do not make any assumptions or approximations. Finite population sizes are considered. Our approach is perfectly general, and following the methods of this paper, it is possible to analyze any selection strategy in evolutionary algorithms.

Item Type:Article
Source:Copyright of this article belongs to MIT Press.
ID Code:9426
Deposited On:02 Nov 2010 12:14
Last Modified:07 Feb 2011 07:53

Repository Staff Only: item control page