Muiltiobjective optimization using nondominated sorting in genetic algorithms

Srinivas, N. ; Deb, Kalyanmoy (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms Evolutionary Computation, 2 (3). pp. 221-248. ISSN 1063-6560

PDF - Publisher Version

Official URL:

Related URL:


In trying to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands that the user have knowledge about the underlying problem. Moreover, in solving multiobjective problems, designers may be interested in a set of Pareto-optimal points, instead of a single point. Since genetic algorithms (GAs) work with a population of points, it seems natural to use GAs in multiobjective optimization problems to capture a number of solutions simultaneously. Although a vector evaluated GA (VEGA) has been implemented by Schaffer and has been tried to solve a number of multiobjective problems, the algorithm seems to have bias toward some regions. In this paper, we investigate Goldberg's notion of nondominated sorting in GAs along with a niche and speciation method to find multiple Pareto-optimal points simultaneously. The proof-of-principle results obtained on three problems used by Schaffer and others suggest that the proposed method can be extended to higher dimensional and more difficult multiobjective problems. A number of suggestions for extension and application of the algorithm are also discussed.

Item Type:Article
Source:Copyright of this article belongs to MIT Press.
ID Code:9405
Deposited On:02 Nov 2010 12:16
Last Modified:16 May 2016 19:13

Repository Staff Only: item control page