Characteristic noise features in light transmission across membrane protein undergoing photocycle

Das, Anshuman J. ; Mukhopadhyay, Sabyasachi ; Narayan, K. S. (2011) Characteristic noise features in light transmission across membrane protein undergoing photocycle Journal of Chemical Physics, 134 (7). 075101_1-075101_5. ISSN 0021-9606

Full text not available from this repository.

Official URL: http://jcp.aip.org/resource/1/jcpsa6/v134/i7/p0751...

Related URL: http://dx.doi.org/10.1063/1.3554745

Abstract

We demonstrate a technique based on noise measurements which can be utilized to study dynamical processes in protein assembly. Direct visualization of dynamics in membrane protein system such as bacteriorhodopsin (bR) upon photostimulation are quite challenging. bR represents a model system where the stimulus-triggered structural dynamics and biological functions are directly correlated. Our method utilizes a pump-probe near field microscopy method in the transmission mode and involves analyzing the transmittance fluctuations from a finite size of molecular assembly. Probability density distributions indicating the effects of finite size and statistical correlations appear as a characteristic frequency distribution in the noise spectra of bR whose origin can be traced to photocycle kinetics. Valuable insight into the molecular processes were obtained from the noise studies of bR and its mutant D96N as a function of external parameters such as temperature, humidity or presence of an additional pump source.

Item Type:Article
Source:Copyright of this article belongs to American Institute of Physics.
ID Code:92193
Deposited On:01 Jun 2012 09:05
Last Modified:01 Jun 2012 09:05

Repository Staff Only: item control page