Effect of 2-(2-pyridyl)azole-based ancillary ligands (L1-4) on the electrophilicity of the nitrosyl Function in [RuII(trpy)(L1-4)(NO)]3+ [trpy = 2,2':6',2' '-terpyridine]. Synthesis, structures, and spectroscopic, electrochemical, and kinetic aspects

Chanda, Nripen ; Paul, Debamita ; Kar, Sanjib ; Mobin, Shaikh M. ; Datta, Anindya ; Puranik, Vedavati G. ; Krishnamurthy Rao, K. ; Lahiri, Goutam Kumar (2005) Effect of 2-(2-pyridyl)azole-based ancillary ligands (L1-4) on the electrophilicity of the nitrosyl Function in [RuII(trpy)(L1-4)(NO)]3+ [trpy = 2,2':6',2' '-terpyridine]. Synthesis, structures, and spectroscopic, electrochemical, and kinetic aspects Inorganic Chemistry, 44 (10). pp. 3499-3511. ISSN 0020-1669

Full text not available from this repository.

Official URL: http://pubs.acs.org/doi/abs/10.1021/ic048184w

Related URL: http://dx.doi.org/10.1021/ic048184w

Abstract

Ruthenium nitrosyl complexes [Ru(trpy)(L1-4)(NO)]3+ (13-16) [trpy = 2,2':6',2''-terpyridine, L1 = 2-(2-pyridyl)benzoxazole, L2 = 2-(2-pyridyl)benzthiazole, L3 = 2-(2-pyridyl)benzimidazole, L4 = 1-methyl-2-(2-pyridyl)-1H-benzimidazole] were obtained in a stepwise manner starting from [RuII(trpy)(L1-4)(Cl)]ClO4 (1-4) → [RuII(trpy)(L1-4)(H2O)](ClO4)2 (5-8) → [RuII(trpy)(L1-4) (NO2)]ClO4 (9-12) → [RuII(trpy)(L1,2,4)(NO)](ClO4)3 (13, 14, 16)/[RuII(trpy)(L3)(NO)](ClO4)2(NO3) (15). Crystal structures of 1, 2, 4, 9, 12, 13, 15, and 16 established the stereoretentive nature of the transformation processes. Though the complexes of L1, L3, and L4 were isolated in the isomeric form A (π -acceptor trpy and azole ring in the equatorial plane and the pyridine and chloride donors in the axial positions), complexes of L2 preferentially stabilized in form B (trpy and pyridine in the equatorial plane and the azole ring and chloride donors in the axial positions). The ν(NO) stretching frequency varied in the range of 1957-1932 cm-1, 13 » 14 ≈15 > 16, primarily depending on the electronic aspects of L as well as the isomeric structural forms. The coordinated nitrosyl function underwent successive reductions of [RuII-NO+]3+ → [RuII-NO° ]2+ and [RuII-NO° ]2+ → [RuII-NO-]+, and the first reduction potential follows the order 14 > 13 »15 ≈ 16. The nearly axial EPR spectra having nitrogen hyperfine splittings (A ≈ 26 G) at 77 κ of 13--16- with g ≈ 2.0 established that the reduction process is largely centered around the nitrosyl function. Despite an appreciably high ν (NO), the complexes were found to be unusually stable even in the aqueous medium. They transformed slowly and only partially into the corresponding nitro derivatives in H2O (k ≈ 10-4 s-1 and K = 0.4-3.8). The chloro (1-4), aqua (5-8), and nitro (9-12) derivatives displayed reasonably strong emissions near 700 nm at 77κ (φ = 10-1-10-2). The aqua derivative 7 was found to interact with the calf thymus and the circular form of p-Bluescript SK DNA.

Item Type:Article
Source:Copyright of this article belongs to American Chemical Society.
ID Code:88391
Deposited On:28 Mar 2012 10:02
Last Modified:28 Mar 2012 10:02

Repository Staff Only: item control page