Two conformationally vicinal thiols at the active site of Leishmania donovani adenosine kinase

Bagui, Tapan K. ; Ghosh, Mallika ; Datta, Alok K. (1996) Two conformationally vicinal thiols at the active site of Leishmania donovani adenosine kinase Biochemical Journal, 316 . pp. 439-445. ISSN 0006-2936

Full text not available from this repository.

Official URL:


Inactivation of adenosine kinase (Adk) from Leishmania donovani correlates with the modification of two conformationally vicinal cysteine residues. In contrast, Adk from hamster liver, despite being sensitive to monothiol-blocking reagents, was insensitive to dithiol modifiers. Inactivation kinetics and substrate-protection studies along with double-modification experiments successively with N-ethylmaleimide in the presence of Ado and sodium m-arsenite-2,3-dimercaptopropanol or diazenedicarboxylic acid bis-N,N'-dimethylamide supported assignment of the two thiols at the Ado-binding site. Cystine bridge formation impaired the ability of the modified enzyme to bind to the substrate. Tryptophan fluorescence of the enzyme was quenched after modification by dithiol-blocking reagents with concomitant loss of activity. However, treatment of the enzyme with methylmethanethiosulphonate (MMTS) led to complete inactivation without a marked change in protein fluorescence. Ado protected both fluorescence and catalytic activity against inactivation by both MMTS and dithiol-blocking reagents. Stern-Volmer quenching analysis of the native and Ado-complexed enzyme suggested that, of the four tryptophan residues, at least one is located at or near the active site. Furthermore quenching constants of native, Ado-complexed and dithiol-modified enzyme in the presence of either acrylamide or KI indicated spatial proximity of tryptophan and two cysteine residues within the hydrophobic domain of the Ado-binding site. Taken together the results suggest important function(s) for the cysteine residue(s). A schematic model is proposed to explain the inactivation of the enzyme by both monothiol- and dithiol-blocking reagents.

Item Type:Article
Source:Copyright of this article belongs to Biochemical Society.
ID Code:86514
Deposited On:10 Mar 2012 12:55
Last Modified:10 Mar 2012 12:55

Repository Staff Only: item control page