Identification of the adenine binding site in the ricin toxin A-chain by fluorescence, CD, and electron spin resonance spectroscopy

Ramalingam, T. S. ; Das, Puspendu K. ; Podder, Sunil K. (1993) Identification of the adenine binding site in the ricin toxin A-chain by fluorescence, CD, and electron spin resonance spectroscopy Biopolymers, 33 (11). pp. 1687-1694. ISSN 0006-3525

Full text not available from this repository.

Official URL: http://onlinelibrary.wiley.com/doi/10.1002/bip.360...

Related URL: http://dx.doi.org/10.1002/bip.360331106

Abstract

CD, electron spin resonance, and fluorescence spectroscopy have been utilized to study the adenine binding site of ricin and its toxic A-subunit. At acidic (4.5) and physiological (7.3) pH, adenine or a spin-labeled analogue of adenine, N6-(2,2,6,6-tetramethyl-1-oxypiperidin-4-yl) adenine, alters the near uv CD spectra of the ricin A-chain as well as intact ricin, whereas the far uv CD spectra of all proteins remain unchanged. Electron spin resonance data show that the adenine spin-labeled analogue interacts strongly with the A-chain both at pH 4.5 and 7.3, but no or very weak binding is observed for the intact ricin or the isolated B-chain. The adenine spin label gets highly immobilized (2AII = 65.5G) by the A-chain. The apparent dissociation constant Kd for the toxic A-chain ligand complex is 1.55 × 10-4M and 5.6 × 10-5M at pH 7.3 and 4.5, respectively. Fluorescence intensity of ricin A-chain bound 1,8-anilinonaphthalenesulfonic acid (ANS) decreases by ~55% at pH 4.5 with the addition of the spin-labeled analogue of adenine, implying that both the ANS and adenine spin label (ADSL) bind to the hydrophobic domain of the A-chain. Fluorescence of the only intrinsic tryptophan probe of the A-chain is also efficiently quenched by ADSL, indicating that the tryptophan residue and the hydrophobic adenine binding site are closely located. All spectroscopic measurements indicate that adenine or its spin-labeled analogue has a single binding site adjacent to the TRP211 residue in the A-chain. Expansion of the A-chain globule and subsequent exposure of the hydrophobic binding site seem to be responsible for the increased binding of adenine at pH 4.5.

Item Type:Article
Source:Copyright of this article belongs to John Wiley and Sons.
ID Code:86332
Deposited On:09 Mar 2012 10:38
Last Modified:09 Mar 2012 10:38

Repository Staff Only: item control page