De novo design and characterization of an apolar helical hairpin peptide at atomic resolution: compaction mediated by weak interactions

Chauhan, Virander S. ; Ramagopal, Udupi A. ; Ramakumar, Suryanarayanarao ; Sahal, Dinkar (2001) De novo design and characterization of an apolar helical hairpin peptide at atomic resolution: compaction mediated by weak interactions Proceedings of the National Academy of Sciences of the United States of America, 98 (3). pp. 870-874. ISSN 0027-8424

[img]
Preview
PDF - Publisher Version
1MB

Official URL: http://www.pnas.org/content/98/3/870.abstract

Abstract

Design of helical super secondary structural motifs is expected to provide important scaffolds to incorporate functional sites, thus allowing the engineering of novel miniproteins with function. An α α, β-dehydrophenylalanine containing 21-residue apolar peptide was designed to mimic the helical hairpin motif by using a simple geometrical design strategy. The synthetic peptide folds into the desired structure as assessed crystallographically at 1.0-Å resolution. The two helices of the helical-hairpin motif, connected by a flexible (Gly)4 linker, are docked to each other by the concerted influence of weak interactions. The folding of the peptide without binary patterning of amino acids, disulfide bonds, or metal ions is a remarkable observation. The results demonstrate that preferred interactions among the hydrophobic residues selectively discriminate their putative partners in space, leading to the unique folding of the peptide, also a hallmark of the unique folding of hydrophobic core in globular proteins. We demonstrate here the engineering of molecules by using weak interactions pointing to their possible further exploitation in the de novo design of protein super secondary structural elements.

Item Type:Article
Source:Copyright of this article belongs to National Academy of Sciences, USA.
ID Code:8251
Deposited On:26 Oct 2010 12:00
Last Modified:16 May 2016 18:17

Repository Staff Only: item control page