Contributions of conformational compression and preferential transition state stabilization to the rate enhancement by Chorismate mutase

Guimaraes, Cristiano Ruch Werneck ; Repasky, Matthew P. ; Chandrasekhar, Jayaraman ; Tirado-Rives, Julian ; Jorgensen, William L. (2003) Contributions of conformational compression and preferential transition state stabilization to the rate enhancement by Chorismate mutase Journal of the American Chemical Society, 125 (23). pp. 6892-6899. ISSN 0002-7863

Full text not available from this repository.

Official URL: http://pubs.acs.org/doi/abs/10.1021/ja021424r

Related URL: http://dx.doi.org/10.1021/ja021424r

Abstract

The rate enhancement provided by the chorismate mutase (CM) enzyme for the Claisen rearrangement of chorismate to prephenate has been investigated by application of the concept of near attack conformations (NACs). Using a combined QM/MM Monte Carlo/free-energy perturbation (MC/FEP) method, 82% and 100% of chorismate conformers were found to be NAC structures in water and in the CM active site, respectively. Consequently, the conversion of non-NACs to NACs does not contribute to the free energy of activation from preorganization of the substrate into NACs. The FEP calculations yielded differences in free energies of activation that well reproduce the experimental data. Additional calculations indicate that the rate enhancement by CM over the aqueous phase results primarily from conformational compression of NACs by the enzyme and that this process is enthalpically controlled. This suggests that preferential stabilization of the transition state in the enzyme environment relative to water plays a secondary role in the catalysis by CM.

Item Type:Article
Source:Copyright of this article belongs to American Chemical Society.
ID Code:7083
Deposited On:25 Oct 2010 12:39
Last Modified:04 Feb 2011 05:44

Repository Staff Only: item control page