Monte Carlo model of electron energy degradation in a CO2 atmosphere

Bhardwaj, Anil ; Jain, Sonal Kumar (2009) Monte Carlo model of electron energy degradation in a CO2 atmosphere Journal of Geophysical Research, 114 . A11309_1-A11309_14. ISSN 0148-0227

PDF - Author Version

Official URL:

Related URL:


A Monte Carlo model has been developed to study the degradation of ≤1000 eV electrons in an atmosphere of CO2, which is one of the most abundant species in Mars' and Venus's atmospheres. The e-CO2 cross sections are presented in an assembled set along with their analytical representations. Monte Carlo simulations are carried out at several energies to calculate the "yield spectra", which embodied all the information related to the electron degradation process and can be used to calculate "yield" (or population) for any inelastic process. The numerical yield spectra have been fitted analytically, resulting in an analytical yield spectra. We have calculated the mean energy per ion pair and efficiencies for various inelastic processes, including the double and dissociative double ionization of CO2 and negative ion formation. The energy distribution of the secondary electrons produced per incident electron is also presented at few incident energies. The mean energy per ion pair for CO2 is 37.5 (35.8) eV at 200 (1000) eV, compared to the experimental value 32.7 eV at high energies. Ionization is the dominant loss process at energies above 50 eV with a contribution of ~50%. Among the excitation processes, 13.6 eV and 12.4 eV states are the dominant loss processes consuming ~28% energy above 200 eV. Around and below ionization threshold, 13.6 eV, 12.4 eV, and 11.1 eV, followed by 8.6 eV and 9.3 eV, excitation states are important loss processes, while below 10 eV, vibrational excitation dominates.

Item Type:Article
Source:Copyright of this article belongs to American Geophysical Union.
Keywords:Electron Collision; Monte Carlo Simulation; CO2
ID Code:64229
Deposited On:05 Oct 2011 11:59
Last Modified:18 May 2016 12:42

Repository Staff Only: item control page