Ligand dynamics controlled reverse spin cross over in bis pyrazolyl pyridine based Fe(II) complex cation with metallodithiolato anions with an example of a ferromagnetic 2:1 cocrystal of mixed Ni(III)/Ni(II) oxidation states

Manoharan, Periakaruppan T. ; Sambandam, Balaji ; Amsarani, Ramamoorthy ; Varghese, Babu ; Gopinath, Chinnakonda S. ; Nomura, Kiyoshi (2011) Ligand dynamics controlled reverse spin cross over in bis pyrazolyl pyridine based Fe(II) complex cation with metallodithiolato anions with an example of a ferromagnetic 2:1 cocrystal of mixed Ni(III)/Ni(II) oxidation states Inorganica Chimica Acta, 374 (1). pp. 586-600. ISSN 0020-1693

Full text not available from this repository.

Official URL: http://www.sciencedirect.com/science/article/pii/S...

Related URL: http://dx.doi.org/10.1016/j.ica.2011.02.081

Abstract

We report here the crystal and molecular structures of three compounds [FeL2] [Ni(mnt)2] (1), [FeL2]2 [Ni(mnt)2]3·2H2O (2) and [FeL2] [Cu(mnt)2]·2CH3CN (3) where L = 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine and mnt = maleonitriledithiolate, and their detailed spectroscopic and magnetic properties using variable temperature Mössbauer, EPR, susceptibility studies, along with room temperature electron spectroscopy for chemical analysis (ESCA) studies. The observed temperature dependant high spin/low spin (HS/LS) ratios of [FeL2]2+ cations in these lattices, exhibiting 'reverse spin cross-over' measured unequivocally by Mossbauer, have been interpreted as resulting from differing amount of 'void space' in the lattice, a measure of the ease of lattice dynamics originating from ligand L. Differential scanning calorimetric data points this HS/LS transition to order-disorder type of second order phase transitions. While trying to test this lattice dynamics controlled property of [FeL2]2+ cations an unusual behavior of cocrystallization of two planar complex anions of the same type in two different oxidation states, viz. [Ni(mnt)2]2- and [Ni(mnt)2], was observed in [FeL2]2 [Ni(mnt2)]3, supported by crystallography, ESCA chemical shifts of Ni 2p3/2 and EPR. The susceptibility data in combination with ESCA chemical shifts of S 2p3/2 and Ni 2p3/2 on all the compounds reveal the importance of charge transfer between the two counter ions.

Item Type:Article
Source:Copyright of this article belongs to Elsevier Science.
Keywords:Iron Complexes; X-ray Crystal Structures; Reverse-spin Crossover; Magnetism
ID Code:61936
Deposited On:15 Sep 2011 12:18
Last Modified:16 Jul 2012 15:44

Repository Staff Only: item control page