Analytical models for capacity estimation of IEEE 802.11 WLANs using DCF for internet applications

Kuriakose, George ; Harsha, Sri ; Kumar, Anurag ; Sharma, Vinod (2009) Analytical models for capacity estimation of IEEE 802.11 WLANs using DCF for internet applications Wireless Networks, 15 (2). pp. 259-277. ISSN 1022-0038

[img]
Preview
PDF - Author Version
331kB

Official URL: http://www.springerlink.com/content/n6908w46703618...

Related URL: http://dx.doi.org/10.1007/s11276-007-0051-8

Abstract

We provide analytical models for capacity evaluation of an infrastructure IEEE 802.11 based network carrying TCP controlled file downloads or full-duplex packet telephone calls. In each case the analytical models utilize the attempt probabilities from a well known fixed-point based saturation analysis. For TCP controlled file downloads, following Bruno et al. (In Networking '04, LNCS 2042, pp.626-637), we model the number of wireless stations (STAs) with ACKs as a Markov renewal process embedded at packet success instants. In our work, analysis of the evolution between the embedded instants is done by using saturation analysis to provide state dependent attempt probabilities. We show that in spite of its simplicity, our model works well, by comparing various simulated quantities, such as collision probability, with values predicted from our model. Next we consider N constant bit rate VoIP calls terminating at N STAs. We model the number of STAs that have an up-link voice packet as a Markov renewal process embedded at so called channel slot boundaries. Analysis of the evolution over a channel slot is done using saturation analysis as before. We find that again the AP is the bottleneck, and the system can support (in the sense of a bound on the probability of delay exceeding a given value) a number of calls less than that at which the arrival rate into the AP exceeds the average service rate applied to the AP. Finally, we extend the analytical model for VoIP calls to determine the call capacity of an 802.11b WLAN in a situation where VoIP calls originate from two different types of coders. We consider N1 calls originating from Type 1 codecs and N2 calls originating from Type 2 codecs. For G711 and G729 voice coders, we show that the analytical model again provides accurate results in comparison with simulations.

Item Type:Article
Source:Copyright of this article belongs to Springer.
Keywords:TCP Throughput on WLAN; VoIP on WLAN; Capacity of WLAN; Performance Modeling of DCF
ID Code:60678
Deposited On:10 Sep 2011 11:53
Last Modified:18 May 2016 10:42

Repository Staff Only: item control page