Electrochemical characterization of a zinc based gel-polymer electrolyte and its application in rechargeable batteries

Kumar, G. Girish ; Sampath, S. (2003) Electrochemical characterization of a zinc based gel-polymer electrolyte and its application in rechargeable batteries Electrochemical and Solid-State Letters, 150 (5). A608-A615. ISSN 1099-0062

Full text not available from this repository.

Official URL: http://link.aip.org/link/?JESOAN/150/A608/1

Related URL: http://dx.doi.org/10.1149/1.1566017

Abstract

A gel-polymer electrolyte (GPE) based on a zinc salt is prepared and investigated for possible applications in a rechargeable solid-state zinc battery. The GPE consists of polyacrylonitrile, propylene carbonate, ethylene carbonate, and zinc trifluoromethane sulfonate (zinc triflate, ZnTf). The composition of the GPE is optimized to contain minimum liquid constituents required for the gel formation with maximum specific conductivity (σ= 2.67×10-3 S cm-1 at 27°C). The specific conductivity (σ) variation with temperature follows an Arrhenius behavior with activation energies in the range of 0.12-0.31 eV for different compositions of the gel. Evidence from ac impedance and cyclic voltammetric studies using Zn/GPE/Zn cell indicate reversibility of Zn/Zn2+ couple at the electrode-electrolyte interface. Temperature and time-dependent studies have been carried out to probe the interfacial behavior. Equivalent circuit analysis has been carried out to determine the values of interfacial resistance (Ri) of the Zn/GPE that is a combination of the surface film resistance (Rf) on the zinc surface and charge-transfer resistance (Rct) of the electrochemical reaction. Cationic transport number measurements yield values of 0.56 at 27°C and 0.14 at 70°C. Several cells have been assembled and the charge-discharge behavior has been followed. Capacities of 98, 65, 47 and 33 mAh g-1 of MnO2 have been achieved at current densities of 10, 50, 100, and 200 µA/cm2 respectively. The charge-discharge studies show a consistent performance for 70 cycles with no significant change in the discharge behavior and capacity values at all current densities studied.

Item Type:Article
Source:Copyright of this article belongs to The Electrochemical Society.
Keywords:Zinc; Polymer Gels; Polymer Electrolytes; Secondary Cells; Equivalent Circuits
ID Code:57339
Deposited On:26 Aug 2011 08:00
Last Modified:26 Aug 2011 08:00

Repository Staff Only: item control page