Topological mimicry and epitope duplication in the guanylyl cyclase C receptor

Nandi, Animesh ; Visweswariah, Sandhya S. ; Suguna, K. ; Surolia, Avadhesha (1998) Topological mimicry and epitope duplication in the guanylyl cyclase C receptor Protein Science, 7 (10). pp. 2175-2183. ISSN 0961-8368

Full text not available from this repository.

Official URL: http://onlinelibrary.wiley.com/doi/10.1002/pro.556...

Related URL: http://dx.doi.org/10.1002/pro.5560071015

Abstract

Guanylyl cyclase C (GCC) is the receptor for the gastrointestinal hormones, guanylin, and uroguanylin, in addition to the bacterial heat-stable enterotoxins, which are one of the major causes of watery diarrhea the world over. GCC is expressed in intestinal cells, colorectal tumor tissue and tumors originating from metastasis of the colorectal carcinoma. We have earlier generated a monoclonal antibody to human GCC, GCC:B10, which was useful for the immunohisto-chemical localization of the receptor in the rat intestine (Nandi A et al., 1997, J Cell Biochem 66:500-511), and identified its epitope to a 63-amino acid stretch in the intracellular domain of GCC. In view of the potential that this antibody has for the identification of colorectal tumors, we have characterized the epitope for GCC:B10 in this study. Overlapping peptide synthesis indicated that the epitope was contained in the sequence HIPPENIFPLE. This sequence was unique to GCC, and despite a short stretch of homology with serum amyloid protein and pertussis toxin, no cross reactivity was detected. The core epitope was delineated using a random hexameric phage display library, and two categories of sequences were identified, containing either a single, or two adjacent proline residues. No sequence identified by phage display was identical to the epitope present in GCC, indicating that phage sequences represented mimotopes of the native epitope. Alignment of these sequences with HIPPENIFPLE suggested duplication of the recognition motif, which was confirmed by peptide synthesis. These studies allowed us not only to define the requirements of epitope recognition by GCC:B10 monoclonal antibody, but also to describe a novel means of epitope recognition involving topological mimicry and probable duplication of the cognate epitope in the native guanylyl cyclase C receptor sequence.

Item Type:Article
Source:Copyright of this article belongs to Cold Spring Harbor Laboratory Press.
Keywords:Epitope Mapping; Guanylyl Cyclase C; Monoclonal Antibody; Phage Display
ID Code:56973
Deposited On:25 Aug 2011 09:15
Last Modified:13 Dec 2011 12:00

Repository Staff Only: item control page