Vitrification of a monatomic metallic liquid

Bhat, M. H. ; Molinero, V. ; Soignard, E. ; Solomon, V. C. ; Sastry, S. ; Yarger, J. L. ; Angell, C. A. (2007) Vitrification of a monatomic metallic liquid Nature, 448 (7155). pp. 787-790. ISSN 0028-0836

Full text not available from this repository.

Official URL: http://www.nature.com/nature/journal/v448/n7155/ab...

Related URL: http://dx.doi.org/10.1038/nature06044

Abstract

Although the majority of glasses in use in technology are complex mixtures of oxides or chalcogenides, there are numerous examples of pure substances-'glassformers'-that also fail to crystallize during cooling. Most glassformers are organic molecular systems, but there are important inorganic examples too such as silicon dioxide and elemental selenium (the latter being polymeric). Bulk metallic glasses can now be made; but, with the exception of Zr50Cu50, they require multiple components to avoid crystallization during normal liquid cooling. Two-component 'metglasses' can often be achieved by hyperquenching, but this has not hitherto been achieved with a single-component system. Glasses form when crystal nucleation rates are slow, although the factors that create the slow nucleation conditions are not well understood. Here we apply the insights gained in a recent molecular dynamics simulation study to create conditions for successful vitrification of metallic liquid germanium. Our results also provide micrographic evidence for a rare polyamorphic transition preceding crystallization of the diamond cubic phase.

Item Type:Article
Source:Copyright of this article belongs to Nature Publishing Group.
ID Code:50186
Deposited On:21 Jul 2011 14:50
Last Modified:21 Jul 2011 14:50

Repository Staff Only: item control page