Biochemical signaling networks decode temporal patterns of synaptic input

Bhalla, Upinder S. (2002) Biochemical signaling networks decode temporal patterns of synaptic input Journal of Computational Neuroscience, 13 (1). pp. 49-62. ISSN 0929-5313

Full text not available from this repository.

Official URL: http://www.springerlink.com/content/kkhw02n5n66895...

Related URL: http://dx.doi.org/10.1023/A:1019644427655

Abstract

Synapses exhibit a wide repertoire of responses to different temporal patterns of synaptic input. Many of these responses are expressed as short and long-term changes in synaptic strength. Electrical properties of channels and calcium buildup can account for rapid aspects of pattern decoding, but it is not clear how more complex input patterns, especially those lasting over many minutes, could be discriminated. This paper shows that a network of signaling pathways can discriminate between complex input patterns lasting tens of minutes, and can give rise to distinct combinatorial patterns of biochemical signaling activity in pathways involved in synaptic change. Regulatory signaling input can alter and even reverse the strengths of responses to input patterns. Thus the synaptic signaling network may function as a temporal decoder that transforms patterns from the time domain into the domain of chemical signaling. This may underlie different synaptic responses to different stimulus patterns.

Item Type:Article
Source:Copyright of this article belongs to Springer-Verlag.
Keywords:Synaptic Plasticity; Simulation; PKC; MAPK; CaMKII
ID Code:4396
Deposited On:18 Oct 2010 08:43
Last Modified:16 May 2011 10:20

Repository Staff Only: item control page