Semistability and finite maps

Biswas, Indranil ; Subramanian, S. (2009) Semistability and finite maps Archiv Der Mathematik, 93 (5). pp. 437-443. ISSN 0003-889X

Full text not available from this repository.

Official URL:

Related URL:


Let f : Y→M be a surjective holomorphic map between compact connected Kahler manifolds such that each fiber of f is a finite subset of Y. Let ω be a Kahler form on M. Using a criterion of Demailly and Paun (Ann. Math. 159 (2004), 1247-1274) it follows that the form f*ω represents a Kahler class. Using this we prove that for any semistable sheaf E → M, the pullback f*E is also semistable. Furthermore, f*E is shown to be polystable provided E is reflexive and polystable. These results remain valid for principal bundles on M and also for Higgs G-sheaves.

Item Type:Article
Source:Copyright of this article belongs to Birkhauser-Verlag.
Keywords:Einstein-hermitian Connection; Semistable Bundle; Finite Map
ID Code:3633
Deposited On:18 Oct 2010 10:17
Last Modified:18 Oct 2010 10:17

Repository Staff Only: item control page