Mitra, A. N. ; Santhanam, I.
(1981)
*A Bethe-Salpeter basis for meson and baryon spectra under harmonic confinement*
Zeitschrift für Physik C: Particles and Fields, 8
(1).
pp. 33-42.
ISSN 0170-9739

Full text not available from this repository.

Official URL: http://www.springerlink.com/content/kj532376125k44...

Related URL: http://dx.doi.org/10.1007/BF01429828

## Abstract

The Bethe-Salpeter equation for qq̅ and qqq systems derived in the preceding paper [8] in the instantaneous approximation are solved algebraically for harmonic confinement. The approximate qq̅ spectrum for all flavour is expressible as F(M) =N+3/2, where
F( M ) = ( M^{2} - 4m_{q}^{2})Ω_{M}^{-1} - Ω_{M}M^{-2}γ^{-2}·(2J.S - 3 - Q_{N}) + F_{QCD}Ω_{M}=8(M m)_{q})^{½}ω˜γ is a mass-dependent FKR-like spring constant ω˜(=0.15 GeV) a universal flavour independent parameter, and γ(≈ 1) a slowly carying quantity. J.S represents the spin-dependent effects and Q_{N}, a quadratic function of N, comprises some significant momentum dependent corrections, while F_{QCD} is a small additional correction due to shortrange gluon exchange effects. An identical equation F˜,(M) = N + 3 holds for non-strange qqq excitations, with a very similar definition of F˜(M) in terms of the same parameters ω˜ and m_{q}. The calculated values of F(M) and F˜(M) in terms of the observed masses M, and m_{ud}=0.28, m_{s}=0.35, m_{c}=1.40 (all in GeV), conform rather well to the principal features of the predictions, viz. (i) spin and flavour degeneracy of qq̅ supermultiplet members at the F(M) level, despite huge variations in their actual masses (e.g., P vs V); and likewise for qqq members (e.g.,N_{L},Δ_{L}) at the F˜(M) level, and (ii) fulfilment of the unit spacing rule ΔF =1, ΔF˜ = 1 for successive h.o. supermultiplets. The P-V degeneracy at the F(M) level leads to the prediction ψ - η_{c} ≈ 100 ± 20 MeV. Finally, the P → ll amplitudes ƒ_{Π,k'} as well as the principal → e^{+} e^{–} widths are fairly well reproduced without extra parameters.

Item Type: | Article |
---|---|

Source: | Copyright of this article belongs to Springer. |

ID Code: | 35161 |

Deposited On: | 09 Apr 2011 07:43 |

Last Modified: | 09 Apr 2011 07:43 |

Repository Staff Only: item control page