Pore accessibility of N2 and Ar in disordered nanoporous solids: theory and experiment

Nguyen, T. X. ; Bhatia, S. K. (2007) Pore accessibility of N2 and Ar in disordered nanoporous solids: theory and experiment Adsorption, 13 (3-4). pp. 307-314. ISSN 0929-5607

Full text not available from this repository.

Official URL: http://www.springerlink.com/content/m2738285501564...

Related URL: http://dx.doi.org/10.1007/s10450-007-9061-1

Abstract

Recently (Nguyen and Bhatia, J. Phys. Chem. C 111:2212-2222, 2007) we have proposed a new algorithm utilising cluster analysis principles to determine pore network accessibility of a disordered material. The algorithm was applied to determine pore accessibility of the reconstructed molecular structure of a saccharose char, obtained in our recent work using hybrid reverse Monte Carlo simulation (Nguyen et al., Mol. Simul. 32:567-577, 2006). The method also identifies kinetically closed pores not accessed by adsorbate molecules at low temperature, when their low kinetic energy cannot overcome the potential barrier at the mouths of pores that can otherwise accommodate them. In the current work, the results are validated by transition state theory calculations for N2 and Ar adsorption, showing that N2 can equilibrate in narrow micropores at practical time scales at 300 K, but not at 77 K. Large differences between time scales for micropore entry and exit are predicted at low temperature for N2, the latter being smaller by over three orders of magnitude. For N2 at 77 K the time constant for pore entry exceeds 3 hr., while for exit it is 134 days. At 300 K these values are smaller than 1 µs, indicating good accessibility at this temperature. These results are verified by molecular dynamics simulations, which reveal that while N2 molecules enter and leave all pores frequently at 300 K, entry and exit events for apparently inaccessible pores are absent at 77 K. For Ar at 87 K better accessibility is evident for the saccharose char compared to N2 at 77 K. This finding is now experimentally shown in this work by comparison of pore size distributions obtained from experimental nitrogen adsorption isotherms of nitrogen and argon at 77 K and 87 K.

Item Type:Article
Source:Copyright of this article belongs to International Adsorption Society.
Keywords:Gas Phase Adsorption; Molecular Modeling; Pore Accessibility; Transition State Theory
ID Code:2918
Deposited On:09 Oct 2010 07:26
Last Modified:17 May 2011 05:44

Repository Staff Only: item control page