Thermodynamics of metal ion binding and denaturation of a calcium binding protein from entamoeba histolytica

Gopal, B. ; Swaminathan, C. P. ; Bhattacharya, Sudha ; Bhattacharya, Alok ; Murthy, M. R. N. ; Surolia, A. (1997) Thermodynamics of metal ion binding and denaturation of a calcium binding protein from entamoeba histolytica Biochemistry, 36 (36). pp. 10910-10916. ISSN 0006-2960

Full text not available from this repository.

Official URL: http://pubs.acs.org/doi/abs/10.1021/bi9702546

Related URL: http://dx.doi.org/10.1021/bi9702546

Abstract

The thermodynamics of the binding of calcium and magnesium ions to a calcium binding protein from Entamoeba histolytica was investigated by isothermal titration calorimetry (ITC) in 20 mM MOPS buffer (pH 7.0) at 20 °C. Enthalpy titration curves of calcium show the presence of four Ca2+ binding sites. There exist two low-affinity sites for Ca2+, both of which are exothermic in nature and with positive cooperative interaction between them. Two other high affinity sites for Ca2+ exist of which one is endothermic and the other exothermic, again with positive cooperative interaction. The binding constants for Ca2+ at the four sites have been verified by a competitive binding assay, where CaBP competes with a chromophoric chelator 5, 5'-Br2 BAPTA to bind Ca2+ and a Ca2+ titration employing intrinsic tyrosine fluorescence of the protein. The enthalpy of titration of magnesium in the absence of calcium is single site and endothermic in nature. In the case of the titrations performed using protein presaturated with magnesium, the amount of heat produced is altered. Further, the interaction between the high-affinity sites changes to negative cooperativity. No exchange of heat was observed throughout the addition of magnesium in the presence of 1 mM calcium. Titrations performed on a cleaved peptide comprising the N-terminus and the central linker show the existence of two Ca2+ specific sites. These results indicate that this CaBP has one high-affinity Ca-Mg site, one high-affinity Ca-specific site, and two low-affinity Ca-specific sites. The thermodynamic parameters of the binding of these metal ions were used to elucidate the energetics at the individual site(s) and the interactions involved therein at various concentrations of the denaturant, guanidine hydrochloride, ranging from 0.05 to 6.5 M. Unfolding of the protein was also monitored by titration calorimetry as a function of the concentration of the denaturant. These data show that at a GdnHCl concentration of 0.25 M the binding affinity for the Mg2+ ion is lost and there are only two sites which can bind to Ca2+, with substantial loss of cooperativity. At concentrations beyond 2.5 M GdnHCl, at which the unfolding of the tertiary structure of this protein is observed by near UV CD spectroscopy, the binding of Ca2+ ions is lost. We thus show that the domain containing the two low-affinity sites is the first to unfold in the presence of GdnHCl. Control experiments with change in ionic strength by addition of KCl in the range 0.25-1 M show the existence of four sites with altered ion binding parameters.

Item Type:Article
Source:Copyright of this article belongs to American Chemical Society.
ID Code:2772
Deposited On:08 Oct 2010 11:04
Last Modified:09 May 2014 10:17

Repository Staff Only: item control page