Paraxial-wave optics and relativistic front description. II. The vector theory

Mukunda, N. ; Simon, R. ; Sudarshan, E. C. G. (1983) Paraxial-wave optics and relativistic front description. II. The vector theory Physical Review A, 28 (5). pp. 2933-2942. ISSN 1050-2947

PDF - Publisher Version

Official URL:

Related URL:


With the extension of the work of the preceding paper, the relativistic front form for Maxwell's equations for electromagnetism is developed and shown to be particularly suited to the description of paraxial waves. The generators of the Poincare group in a form applicable directly to the electric and magnetic field vectors are derived. It is shown that the effect of a thin lens on a paraxial electromagnetic wave is given by a six-dimensional transformation matrix, constructed out of certain special generators of the Poincare group. The method of construction guarantees that the free propagation of such waves as well as their transmission through ideal optical systems can be described in terms of the metaplectic group, exactly as found for scalar waves by Bacry and Cadilhac. An alternative formulation in terms of a vector potential is also constructed. It is chosen in a gauge suggested by the front form and by the requirement that the lens transformation matrix act locally in space. Pencils of light with accompanying polarization are defined for statistical states in terms of the two-point correlation function of the vector potential. Their propagation and transmission through lenses are briefly considered in the paraxial limit. This paper extends Fourier optics and completes it by formulating it for the Maxwell field. We stress that the derivations depend explicitly on the "henochromatic" idealization as well as the identification of the ideal lens with a quadratic phase shift and are heuristic to this extent.

Item Type:Article
Source:Copyright of this article belongs to American Physical Society.
ID Code:25301
Deposited On:06 Dec 2010 13:36
Last Modified:17 May 2016 08:47

Repository Staff Only: item control page