A first-principles thermodynamic approach to ordering in Ni-Mo alloys

Arya, A. ; Banerjee, S. ; Das, G. P. ; Dasgupta, I. ; Saha-Dasgupta, T. ; Mookerjee, A. (2001) A first-principles thermodynamic approach to ordering in Ni-Mo alloys Acta Materialia, 49 (17). pp. 3575-3587. ISSN 1359-6454

[img]
Preview
PDF - Publisher Version
294kB

Official URL: http://www.actamat.org/article/S1359-6454(01)00235...

Abstract

There is a competition between several face centered cubic (FCC)-based ordered inter-metallic phases in Ni-Mo alloys containing 8-33 at% Mo. The transformation behavior of these alloys in terms of ordering instabilities has been studied. First-principles tight-binding-linear muffin-tin orbital (TB-LMTO) method coupled with augmented space recursion (ASR) in conjunction with orbital peeling (OP) technique has been employed to extract the concentration dependent effective pair interactions. Further, the mean-field statistical mechanics based static concentration wave (SCW) model has been used to determine the free energies of these ordered phases as functions of temperature, composition and order parameter. This ASR-OP-SCW approach, applied to Ni-Mo alloy system, gives the correct ground state stability sequence as observed experimentally. Furthermore, it has been shown that such an approach can be used to study the complex transformation behavior involving several competing superstructures as well as competing first order and second order ordering processes.

Item Type:Article
Source:Copyright of this article belongs to Elsevier Science.
Keywords:Order-disorder Phenomena; Thermodynamics; Ni-Mo Alloys; First Principles Calculations
ID Code:22909
Deposited On:25 Nov 2010 13:52
Last Modified:17 May 2016 06:51

Repository Staff Only: item control page