Enhancement of electromagnetic anomalies by a conducting overburden II

Gaur, V. K. ; Verma, O. P. (1973) Enhancement of electromagnetic anomalies by a conducting overburden II Geophysical Prospecting, 21 (1). pp. 159-184. ISSN 0016-8025

Full text not available from this repository.

Official URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-...

Related URL: http://dx.doi.org/10.1111/j.1365-2478.1973.tb00022.x

Abstract

The influence of a partially conducting overburden/host rock on the electromagnetic response of a horizontal, tabular conducting ore body, investigated with the aid of quantitative scale model experiments, was discussed in an earlier paper (Gaur, Verma and Gupta 1971), which will be referred to as I. This paper presents the results of more comprehensive experiments subsequently carried out to study the combined effect of various geological parameters, namely: the dip and depth of burial of the ore body, its electrical conductivity and that of the zone surrounding it. These results obtained for four different transmitter-receiver configurations confirm the general enhancement of response in varying degrees, brought about by a conducting overburden. However, the transformation of the shapes of the anomaly profiles with increasing overburden conductivity is observed to depend on the dip of the ore body, being more drastic for gently dipping ones. Variations in the inphase and quadrature components as well as in the phase of the anomaly have been studied for varying depths of burial of the ore body and for a number of values of the solution conductivity. Anomaly index diagrams have been constructed with a view to predicting possible values of the geological parameters from a knowledge of the anomaly components. It is felt that the notable overburden effects are caused by a drastic redistribution and concentration of currents, mostly in a narrow loop at the top of the ore body, brought about by its galvanic contact with an extended medium of relatively poorer conductivity.

Item Type:Article
Source:Copyright of this article belongs to European Association of Geoscientists & Engineers.
ID Code:21788
Deposited On:22 Nov 2010 10:32
Last Modified:31 May 2011 09:28

Repository Staff Only: item control page