Growth and studies of calcium doped laser ablated barium titanate thin films

Victor, P. ; Ranjith, R. ; Tyagi, A. K. ; Rajagopalan, S. ; Krupanidhi, S. B. (2003) Growth and studies of calcium doped laser ablated barium titanate thin films Integrated Ferroelectrics, 54 (1). pp. 747-754. ISSN 1058-4587

Full text not available from this repository.

Official URL: http://www.informaworld.com/smpp/content~db=all~co...

Related URL: http://dx.doi.org/10.1080/10584580390259209

Abstract

Ba1 - xCaxTiO3 targets were prepared by conventional solid state reaction with varied amounts of the calcium content (5 at.%, 10 at.%) and the thin films were deposited on Pt(111) coated Si substrate using pulsed laser ablation technique. The thin films were deposited at different pressures and temperatures, so as to determine the optimized growth parameter for the good quality BCT thin films. The pressure variation on the growth parameters made a dramatic impact in tailoring the dielectric constant and phase transition. The phase evolution of the BCT thin films evolves from 450° C and at higher substrate temperatures (~700° C) for different partial pressures of oxygen, the preferred orientation of the thin films were observed. The SIMS analysis reveals a sharp interface exist at the bottom electrode (Pt)-BCT thin films indicating no interdiffusion taking place which might lead to the degradation of devices. The BCT thin films deposited at higher pressures (>60 mtorr) exhibited higher Ba content indicating the possibility of the Ca occupying the Ti site and is reflected in the decrease of the dielectric phase transition temperature. The ferroelectric hysteresis and Capacitance voltage measurement shows the signature of ferroelectricity.

Item Type:Article
Source:Copyright of this article belongs to Taylor and Francis Ltd.
ID Code:19267
Deposited On:23 Nov 2010 13:13
Last Modified:06 Jun 2011 04:51

Repository Staff Only: item control page