Joseph, K.T. ; Veerappa Gowda, G. D. (1995) Solution of a system of nonstrictly hyperbolic conservation laws Proceedings of the Indian Academy of Sciences  Mathematical Sciences, 105 (2). pp. 207218. ISSN 02534142

PDF
 Publisher Version
944kB 
Official URL: http://www.ias.ac.in/j_archive/mathsci/105/2/2072...
Related URL: http://dx.doi.org/10.1007/BF02880367
Abstract
In this paper we study a special case of the initial value problem for a 2×2 system of nonstrictly hyperbolic conservation laws studied by Lefloch, whose solution does not belong to the class ofL 8 functions always but may contain dmeasures as well: Lefloch's theory leaves open the possibility of nonuniqueness for some initial data. We give here a uniqueness criteria to select the entropy solution for the Riemann problem. We write the system in a matrix form and use a finite difference scheme of Lax to the initial value problem and obtain an explicit formula for the approximate solution. Then the solution of initial value problem is obtained as the limit of this approximate solution.
Item Type:  Article 

Source:  Copyright of this article belongs to Indian Academy of Sciences. 
Keywords:  System of Conservation Laws; Delta Waves; Explicit Formula 
ID Code:  14863 
Deposited On:  12 Nov 2010 13:27 
Last Modified:  16 May 2016 23:50 
Repository Staff Only: item control page