High-Throughput RNA Sequencing Analysis of Plasma Samples Reveals Circulating microRNA Signatures with Biomarker Potential in Dengue Disease Progression

Saini, Jaya ; Bandyopadhyay, Bhaswati ; Pandey, Abhay Deep ; Ramachandran, V. G. ; Das, Shukla ; Sood, Vikas ; Banerjee, Arup ; Vrati, Sudhanshu ; Knipe, David M. (2020) High-Throughput RNA Sequencing Analysis of Plasma Samples Reveals Circulating microRNA Signatures with Biomarker Potential in Dengue Disease Progression mSystems, 5 (5). ISSN 2379-5077

Full text not available from this repository.

Official URL: http://doi.org/10.1128/mSystems.00724-20

Related URL: http://dx.doi.org/10.1128/mSystems.00724-20

Abstract

The circulating microRNA (miRNA) profile has been widely used for identifying potential biomarkers against viral infections. However, data on circulating microRNA expression patterns in dengue patients are scanty. Considering the impact of severity caused by dengue infection, circulating miRNA profiles in plasma of dengue patients may prove to be valuable for developing early prognostic markers for the disease severity. Here, we described an in-depth analytical study of small RNA sequencing data obtained from the plasma of 39 dengue patients. Integrating bioinformatics and in vitro studies, we identified differentially expressed miRNAs (DEMs) (log2 fold change U+003E≥1.5, P< 0.05) associated with dengue disease progression. In comparing miRNA expression pattern with the follow-up samples, nine miRNAs were found to exhibit an altered expression that could distinguish between severe dengue and the convalescent patients. To understand the abundance and specificity of the DEMs in the context of dengue infection and disease progression, eight top-hit DEMs were further validated in the dengue virus-infected cell lines as well as in the patient’s plasma and peripheral blood mononuclear cells (PBMCs) using the quantitative reverse transcription-PCR (qRT‐PCR) method. Importantly, receiver operating curve analysis further confirmed that the plasma expression pattern of hsa-miR-122-5p could differentiate between different stages of dengue infection (area under the concentration-time curve [AUC] = 0.792), and dengue-negative patients with other febrile illnesses (AUC = 0.984). The in silico analysis of DEM target genes suggested an enrichment of the pathways associated with metabolism and inflammation. Our study gives a global view of miRNA expression in the plasma from dengue patients and provides a precious resource of candidate miRNAs involved in dengue infection and disease progression.

Item Type:Article
Source:Copyright of this article belongs to American Society for Microbiology.
ID Code:135823
Deposited On:21 Aug 2023 05:07
Last Modified:21 Aug 2023 07:58

Repository Staff Only: item control page