Formation of Blood Droplets: Influence of the Plasma Proteins

Kar, Shantimoy ; Kar, Aritra ; Chaudhury, Kaustav ; Maiti, Tapas Kumar ; Chakraborty, Suman (2018) Formation of Blood Droplets: Influence of the Plasma Proteins ACS Omega, 3 (9). pp. 10967-10973. ISSN 2470-1343

[img] PDF
1MB

Official URL: http://doi.org/10.1021/acsomega.8b01279

Related URL: http://dx.doi.org/10.1021/acsomega.8b01279

Abstract

Blood is a complex multiphase fluid exhibiting pronounced shear-thinning and viscoelastic behavior. By studying the formation of blood droplets through simple dripping, we observe blood-drop detachment following a neck formation and subsequent thinning until breakup, similar to that of other liquids. Our experimental findings reveal that it exhibits two distinct modes of neck evolution characteristics; one mode corresponds to incessant collapsing of the liquid neck, whereas the other mode correlates thinning of an extended long thread leading to the breakup. We show that the two modes of neck evolution closely follow the theory of pinch-off for shear-thinning and viscoelastic fluids independent of hematocrit concentration in the range of healthy individuals. Furthermore, we observe that the relaxation time scales are very similar to that of plasma; this explains the key role of plasma proteins to blood rheology. We envision that our results are likely to bear far-reaching implications in understanding the contribution of plasma proteins to the rheology of blood and theory of drop formation of complex non-Newtonian fluids.

Item Type:Article
Source:Copyright of this article belongs to American Chemical Society
ID Code:134728
Deposited On:11 Jan 2023 08:39
Last Modified:30 Jan 2023 09:58

Repository Staff Only: item control page