Instantaneous maturity rate: a novel and compact characterization of biological growth curve models

Chakraborty, Biman ; Bhowmick, Amiya Ranjan ; Chattopadhyay, Joydev ; Bhattacharya, Sabyasachi (2022) Instantaneous maturity rate: a novel and compact characterization of biological growth curve models Journal of Biological Physics, 48 (3). pp. 295-319. ISSN 0092-0606

Full text not available from this repository.

Official URL: http://doi.org/10.1007/s10867-022-09609-9

Related URL: http://dx.doi.org/10.1007/s10867-022-09609-9

Abstract

Modeling and analysis of biological growth curves are an age-old study area in which much effort has been dedicated to developing new growth equations. Recent efforts focus on identifying the correct model from a large number of equations. The relative growth rate (RGR), developed by Fisher (1921), has largely been used in the statistical inference of biological growth curve models. It is convenient to express growth equations using RGR, where RGR can be expressed as functions of size or time. Even though RGR is model invariant, it has limitations when it comes to identifying actual growth patterns. By proposing interval-specific rate parameters (ISRPs), Pal et al. (2018) appeared to solve this problem. The ISRP is based on the mathematical structure of the growth equations. Therefore, it is not model invariant. The current effort is to develop a measure of growth that is model invariant like RGR and shares the advantages of ISRP. We propose a new measure of growth, which we call instantaneous maturity rate (IMR). IMR is model invariant, which allows it to distinguish growth patterns more clearly than RGR. IMR is also scale-invariant and can take several forms including increasing, decreasing, constant, sigmoidal, bell-shaped, and bathtub. A wide range of possible IMR shapes makes it possible to identify different growth curves. The estimation procedure of IMR under a stochastic setup has been developed. Statistical properties of empirical IMR estimators have also been investigated in detail. In addition to extensive simulation studies, real data sets have been analyzed to prove the utility of IMR.

Item Type:Article
Source:Copyright of this article belongs to Springer Nature Switzerland AG
Keywords:Relative growth rate;Identification of growth curves;Characterization of growth curves;Model selectionds
ID Code:132119
Deposited On:14 Dec 2022 05:40
Last Modified:14 Dec 2022 05:40

Repository Staff Only: item control page