Dimerized Glycosaminoglycan Chains Increase FGF Signaling during Zebrafish Development

Nguyen, Thao K. N. ; Tran, Vy M. ; Sorna, Venkataswamy ; Eriksson, Inger ; Kojima, Akinori ; Koketsu, Mamoru ; Loganathan, Duraikkannu ; Kjellén, Lena ; Dorsky, Richard I. ; Chien, Chi-Bin ; Kuberan, Balagurunathan (2013) Dimerized Glycosaminoglycan Chains Increase FGF Signaling during Zebrafish Development ACS Chemical Biology, 8 (5). pp. 939-948. ISSN 1554-8929

Full text not available from this repository.

Official URL: http://doi.org/10.1021/cb400132r

Related URL: http://dx.doi.org/10.1021/cb400132r

Abstract

Proteoglycans (PGs) modulate numerous signaling pathways during development through binding of their glycosaminoglycan (GAG) side chains to various signaling molecules, including fibroblast growth factors (FGFs). A majority of PGs possess two or more GAG side chains, suggesting that GAG multivalency is imperative for biological functions in vivo. However, only a few studies have examined the biological significance of GAG multivalency. In this report, we utilized a library of bis- and tris-xylosides that produce two and three GAG chains on the same scaffold, respectively, thus mimicking PGs, to examine the importance of GAG valency and chain type in regulating FGF/FGFR interactions in vivo in zebrafish. A number of bis- and tris-xylosides, but not mono-xylosides, caused an elongation phenotype upon their injection into embryos. In situ hybridization showed that elongated embryos have elevated expression of the FGF target gene mkp3 but unchanged expression of reporters for other pathways, indicating that FGF/FGFR signaling was specifically hyperactivated. In support of this observation, elongation can be reversed by the tyrosine kinase inhibitor SU5402, mRNA for the FGFR antagonist sprouty4, or FGF8 morpholino. Endogenous GAGs seem to be unaffected after xyloside treatment, suggesting that this is a gain-of-function phenotype. Furthermore, expression of a multivalent but not a monovalent GAG containing syndecan-1 proteoglycan recapitulates the elongation phenotype observed with the bivalent xylosides. On the basis of these in vivo findings, we propose a new model for GAG/FGF/FGFR interactions in which dimerized GAG chains can activate FGF-mediated signal transduction pathways.

Item Type:Article
Source:Copyright of this article belongs to American Chemical Society.
ID Code:130194
Deposited On:05 Dec 2022 06:15
Last Modified:05 Dec 2022 06:15

Repository Staff Only: item control page