Tissue multifractality and Born approximation in analysis of light scattering: a novel approach for precancers detection

Das, Nandan ; Chatterjee, Subhasri ; Kumar, Satish ; Pradhan, Asima ; Panigrahi, Prasanta ; Vitkin, I. Alex ; Ghosh, Nirmalya (2015) Tissue multifractality and Born approximation in analysis of light scattering: a novel approach for precancers detection Scientific Reports, 4 (1). ISSN 2045-2322

Full text not available from this repository.

Official URL: http://doi.org/10.1038/srep06129

Related URL: http://dx.doi.org/10.1038/srep06129

Abstract

Multifractal, a special class of complex self-affine processes, are under recent intensive investigations because of their fundamental nature and potential applications in diverse physical systems. Here, we report on a novel light scattering-based inverse method for extraction/quantification of multifractality in the spatial distribution of refractive index of biological tissues. The method is based on Fourier domain pre-processing via the Born approximation, followed by the Multifractal Detrended Fluctuation Analysis. The approach is experimentally validated in synthetic multifractal scattering phantoms and tested on biopsy tissue slices. The derived multifractal properties appear sensitive in detecting cervical precancerous alterations through an increase of multifractality with pathology progression, demonstrating the potential of the developed methodology for novel precancer biomarker identification and tissue diagnostic tool. The novel ability to delineate the multifractal optical properties from light scattering signals may also prove useful for characterizing a wide variety of complex scattering media of non-biological origin.

Item Type:Article
Source:Copyright of this article belongs to ResearchGate GmbH.
ID Code:127910
Deposited On:14 Oct 2022 11:36
Last Modified:14 Oct 2022 11:36

Repository Staff Only: item control page