Structural mechanism behind piezoelectric enhancement in off-stoichiometric Na0.5Bi0.5TiO3 based lead-free piezoceramics

Mishra, Anupam ; Khatua, Dipak Kumar ; De, Arnab ; Majumdar, Bhaskar ; Frömling, Till ; Ranjan, Rajeev (2019) Structural mechanism behind piezoelectric enhancement in off-stoichiometric Na0.5Bi0.5TiO3 based lead-free piezoceramics Acta Materialia, 164 . pp. 761-775. ISSN 1359-6454

Full text not available from this repository.

Official URL: http://doi.org/10.1016/j.actamat.2018.11.015

Related URL: http://dx.doi.org/10.1016/j.actamat.2018.11.015

Abstract

While studies in the past have shown that certain kinds of off-stoichiometry enhance the piezoelectric response of the lead-free piezoceramic Na0.5Bi0.5TiO3 (NBT), there is a lack of clarity regarding the mechanism associated with this interesting phenomenon from the fundamental structural perspective. In this paper, we have investigated this issue comprehensively and succeeded in establishing a mutual correspondence between off-stoichiometry, grain size, crystal structure, dielectric and piezoelectric properties in Na0.5Bi0.5TiO3 (NBT). Of the four different types of off-stoichiometric samples synthesized as per nominal formulae namely Na0.5+xBi0.5TiO3 (Na-excess Na-series), Na0.5-xBi0.5TiO3 (Na-deficient Na-series), Na0.5Bi0.5+xTiO3 (Bi-excess Bi-series), and Na0.5Bi0.5-xTiO3 (Bi-deficient Bi-series), the best piezoelectric response (d33 ∼ 100 pC/N) was obtained in the Na-deficient series with x = 0.04. We succeeded in establishing the structural link between off-stoichiometry and piezoelectricity of this series by examining the structural state of the specimens in their poled state. We show that the off-stoichiometric compositions exhibiting higher piezoelectric response contain a higher fraction of the disordered ferroelectric phase coexisting with the field stabilized long-range ferroelectric (R3c) order. Beyond the critical off-stoichiometry (x > 0.04), the dominance of the structural disorder collapses the piezoelectric response of the system. We also show that what can be achieved by off-stoichiometry can as well be achieved by reducing the grain size of stoichiometric NBT. Our results suggest that the enhanced piezoelectric response of the off-stoichiometric compositions is due to their reduced grain size as compared to the stoichiometric composition, and that the nature of the defect species has a secondary role, if any. We found the same phenomenon/mechanism to be operative in the off-stoichiometric morphotropic phase boundary composition 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 (NBT-6BT). While our experiments confirm the role of the surviving structural heterogeneity (after poling) as an important contributing factor which enhances the piezoelectric response of NBT-based lead-free piezoceramics, we also use dielectric dispersion as a tool to show that the off-stoichiometric composition exhibiting highest piezoelectric response is characterized by maximum suppression of the disordered phase by the poling field.

Item Type:Article
Source:Copyright of this article belongs to Elsevier Science.
ID Code:122682
Deposited On:06 Aug 2021 10:33
Last Modified:31 Aug 2021 06:20

Repository Staff Only: item control page