Orographic control of the Bay of Bengal cold pool rainfall

Arushi, P V ; Chakraborty, Arindam ; Nanjundiah, Ravi S (2017) Orographic control of the Bay of Bengal cold pool rainfall Proceedings of the Indian Academy of Sciences - Earth and Planetary Sciences, 126 (8). ISSN 0253-4126

Full text not available from this repository.

Official URL: http://doi.org/10.1007/s12040-017-0892-1

Related URL: http://dx.doi.org/10.1007/s12040-017-0892-1

Abstract

In boreal summer (June–September), most of the Indian land and its surroundings experience rainrates exceeding 6 mm day−1 with considerable spatial variability. Over southern Bay of Bengal (BoB) along the east coast of the Indian peninsula (henceforth referred to as the Bay of Bengal cold pool or BoB-CP), the rain intensity is significantly lower (<2 mm day−1) than its surroundings. This low rainfall occurs despite the fact that the sea surface temperature in this region is well above the threshold for convection and the mean vorticity of the boundary layer is cyclonic with a magnitude comparable to that over the central Indian monsoon trough where the rainrate is about 10 mm day−1. It is also noteworthy that the seasonal cycle of convection over the BoB-CP shows a primary peak in November and a secondary peak in May. This is in contrast to the peak in June–July over most of the oceanic locations surrounding the BoB-CP. In this study, we investigate the role of the Western Ghat (WG) mountains in an Atmospheric General Circulation Model (AGCM) to understand this paradox. Decade-long simulations of the AGCM were carried out with varying (from 0 to 2 times the present) heights of the WG. We find that the lee waves generated by the strong westerlies in the lower troposphere in the presence of the WG mountains cause descent over the BoB-CP. Thus, an increase in the height of the WG strengthens the lee waves and reduces rainfall over the BoB-CP. More interestingly in the absence of WG mountains, the BoB-CP shows a rainfall maxima in the boreal summer similar to that over its surrounding oceans. The WG also impacts the climate over the middle and high latitude regions by modifying the upper tropospheric circulation. The results of this study underline the importance of narrow mountains like the WG in the tropics in determining the global climate and possibly calls for a better representation of such mountains in climate models.

Item Type:Article
Source:Copyright of this article belongs to Indian Academy of Sciences.
ID Code:120428
Deposited On:29 Jun 2021 13:49
Last Modified:29 Jun 2021 13:49

Repository Staff Only: item control page