Multiferroic properties of nanocrystalline BaTiO3

Mangalam, R.V.K. ; Ray, Nirat ; Waghmare, Umesh V. ; Sundaresan, A. ; Rao, C.N.R. (2009) Multiferroic properties of nanocrystalline BaTiO3 Solid State Communications, 149 (1-2). pp. 1-5. ISSN 0038-1098

Full text not available from this repository.

Official URL:

Related URL:


Some of the Multiferroics [H. Schmid, Ferroelectrics 162 (1994) 317] form a rare class of materials that exhibit magneto–electric coupling arising from the coexistence of ferromagnetism and ferroelectricity, with potential for many technological applications [J.F. Scott, Nat. Mater. 6 (2007) 256; N.A. Spaldin, M. Fiebig, Science 309 (2005) 391]. Over the last decade, an active research on multiferroics has resulted in the identification of a few routes that lead to multiferroicity in bulk materials [C. Ederer, N.A. Spaldin, Nat. Mater. 3 (2004) 849; D.V. Efremov, J. van den Brink, D.I. Khomskii, Nat. Mater. 3 (2004) 853; N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.W. Cheong, Nature 429 (2004) 392]. While ferroelectricity in a classic ferroelectric such as BaTiO3 is expected to diminish with the reducing particle size, [C.H. Ahn, K.M. Rabe, J.M. Triscone, Science 303 (2004) 488; J. Junquera, P. Ghosez, Nature 422 (2003) 506] ferromagnetism cannot occur in its bulk form [N.A. Hill, J. Phys. Chem. B 104 (2000) 6694]. Here, we use a combination of experiment and first-principles simulations to demonstrate that multiferroic nature emerges in intermediate size nanocrystalline BaTiO3, ferromagnetism arising from the oxygen vacancies at the surface and ferroelectricity from the core. A strong coupling between a surface polar phonon and spin is shown to result in a magnetocapacitance effect observed at room temperature, which can open up possibilities of new electro–magneto-mechanical devices at the nano-scale.

Item Type:Article
Source:Copyright of this article belongs to Elsevier Science.
ID Code:120088
Deposited On:22 Jun 2021 08:01
Last Modified:22 Jun 2021 08:01

Repository Staff Only: item control page