Symmetry Origin of the Dzyaloshinskii–Moriya Interaction and Magnetization Reversal in YVO3

Sharma, Shivani ; Shanbhag, Pavitra N. ; Orlandi, Fabio ; Manuel, Pascal ; Langridge, Sean ; Adroja, Devashibhai ; Sanyal, Milan K. ; Sundaresan, Athinarayanan (2021) Symmetry Origin of the Dzyaloshinskii–Moriya Interaction and Magnetization Reversal in YVO3 Inorganic Chemistry, 60 (4). pp. 2195-2202. ISSN 0020-1669

Full text not available from this repository.

Official URL: http://doi.org/10.1021/acs.inorgchem.0c02845

Related URL: http://dx.doi.org/10.1021/acs.inorgchem.0c02845

Abstract

We have investigated magneto-structural phase transitions in polycrystalline YVO3 using high-resolution neutron powder diffraction toward understanding the phenomenon of magnetization reversal. Contrary to earlier reports, our study reveals that both C-type and G-type antiferromagnetic ordering, corresponding to G-type and C-type orbital ordered phases, respectively, occur at the same temperature (TN = 115 K) with the G-type antiferromagnetic phase growing at the expense of the C-type one on cooling. These processes cease at TS ∼ 77 K; however, a minor (∼4%) untransformed C-type phase remains unchanged down to 1.7 K. The symmetry analysis indicates different symmetry origins of the Dzyaloshinskii–Moriya interaction in each phase, which can explain the magnetization reversal observed between TN and TS. We discuss that magnetic phase separation and associated weak ferromagnetism may be the common mechanism underlying the magnetization reversal phenomenon observed in other RVO3 systems (R = rare earth).

Item Type:Article
Source:Copyright of this article belongs to American Chemical Society.
ID Code:119952
Deposited On:19 Jun 2021 12:28
Last Modified:19 Jun 2021 12:28

Repository Staff Only: item control page