Planar Heterojunction Solar Cell Employing a Single-Source Precursor Solution-Processed Sb2S3 Thin Film as the Light Absorber

Tamilselvan, Muthusamy ; Byregowda, Archana ; Su, Ching-Yuan ; Tseng, Chung-Jen ; Bhattacharyya, Aninda Jiban (2019) Planar Heterojunction Solar Cell Employing a Single-Source Precursor Solution-Processed Sb2S3 Thin Film as the Light Absorber ACS Omega, 4 (7). pp. 11380-11387. ISSN 2470-1343

Full text not available from this repository.

Official URL: http://doi.org/10.1021/acsomega.9b01245

Related URL: http://dx.doi.org/10.1021/acsomega.9b01245

Abstract

We discuss here a solution-processed thin film of antimony trisulphide (Sb2S3; band gap ≈ 1.7 eV; electronic configuration: ns2np0) for applications in planar heterojunction (PHJ) solar cells. An alternative solution processing method involving a single-metal organic precursor, viz., metal–butyldithiocarbamic acid complex, is used to grow the thin films of Sb2S3. Because of excess sulphide in the metal complex, the formation of any oxide is nearly retarded. Sb2S3 additionally displays structural anisotropy with a ribbon-like structure along the [001] direction. These ribbon-like structures, if optimally oriented with respect to the electron transport layer (ETL)/glass substrate, can be beneficial for light-harvesting and charge-transport properties. A PHJ solar cell is fabricated comprising Sb2S3 as the light absorber and CdS as an ETL coated on to FTO. With varying film sintering temperature and thickness, the typical ribbon-like structures predominantly with planes hkl: l = 0 stacked horizontally along with respect to CdS/FTO are obtained. The morphology of the films is observed to be a function of the sintering temperature, with higher sintering temperatures yielding compact and smooth films with large-sized grains. Maximum photon to electricity efficiency of 2.38 is obtained for PHJ solar cells comprising 480 nm thick films of Sb2S3 sintered at 350 °C having a grain size of few micrometers (>5 μm). The study convincingly shows that improper grain orientation, which may lead to nonoptimal alignments of the intrinsic structure with regard to the ETL/glass substrate, is not the sole parameter for determining photovoltaics performance. Other solution-processing parameters can still be suitably chosen to generate films with optimum morphology, leading to high photon to electricity efficiency.

Item Type:Article
Source:Copyright of this article belongs to American Chemical Society.
ID Code:116746
Deposited On:09 Apr 2021 09:08
Last Modified:09 Apr 2021 09:08

Repository Staff Only: item control page