Reliability of Magnetoelastic Switching of Nonideal Nanomagnets with Defects: A Case Study for the Viability of Straintronic Logic and Memory

Winters, David ; Abeed, Md Ahsanul ; Sahoo, Sourav ; Barman, Anjan ; Bandyopadhyay, Supriyo (2019) Reliability of Magnetoelastic Switching of Nonideal Nanomagnets with Defects: A Case Study for the Viability of Straintronic Logic and Memory Physical Review Applied, 12 (3). ISSN 2331-7019

Full text not available from this repository.

Official URL: http://doi.org/10.1103/PhysRevApplied.12.034010

Related URL: http://dx.doi.org/10.1103/PhysRevApplied.12.034010

Abstract

Magnetoelastic (straintronic) switching of bistable magnetostrictive nanomagnets is an extremely energy-efficient switching methodology for (magnetic) binary switches that has recently attracted widespread attention because of its potential application in ultra-low-power digital computing hardware. Unfortunately, this modality of switching is also very error prone at room temperature. Theoretical studies of switching error probability of magnetoelastic switches have predicted probabilities ranging from 10-8 to 10-3 at room temperature for ideal, defect-free nanomagnets, but experiments with real nanomagnets show a much higher probability that exceeds 0.1 in some cases. The obvious spoilers that can cause this large difference are defects and nonidealities. We theoretically study the effect of common defects (that occur during fabrication) on magnetoelastic switching probability in the presence of room-temperature thermal noise. Surprisingly, we find that even small defects increase the switching error probabilities by orders of magnitude. There is usually a critical stress that leads to the lowest error probability and its value increases enormously in the presence of defects. All this could limit or preclude the application of magnetoelastic (straintronic) binary switches in either Boolean logic or memory, despite their excellent energy efficiency, and restrict them to non-Boolean (e.g., neuromorphic, stochastic) computing applications. We also study the difference between magnetoelastic switching with a stress pulse of constant amplitude and sinusoidal time-varying amplitude (e.g., due to a surface acoustic wave) and find that the latter method is more reliable and generates lower switching error probabilities in most cases provided the time variation is reasonably slow.

Item Type:Article
Source:Copyright of this article belongs to American Physical Society.
ID Code:116184
Deposited On:06 Apr 2021 09:54
Last Modified:06 Apr 2021 09:54

Repository Staff Only: item control page