Regulation of microfilament reorganization and invasiveness of breast cancer cells by kinase dead p21-activated kinase-1

Adam, Liana ; Vadlamudi, Ratna ; Mandal, Mahitosh ; Chernoff, Jonathan ; Kumar, Rakesh (2000) Regulation of microfilament reorganization and invasiveness of breast cancer cells by kinase dead p21-activated kinase-1 Journal of Biological Chemistry, 275 (16). pp. 12041-12050. ISSN 0021-9258

[img]
Preview
PDF - Publisher Version
1MB

Official URL: http://www.jbc.org/content/275/16/12041.full

Related URL: http://dx.doi.org/10.1074/jbc.275.16.12041

Abstract

Stimulation of growth factor signaling has been implicated in the development of invasive phenotype and p21-activated kinase (PAK1) activation in human breast epithelial cancer cells. To further explore the roles of PAK1 in the invasive behavior of breast cancer cells, in the present study we investigated the influence of inhibition of PAK1 activity on the reorganization of cytoskeleton components that control motility and invasiveness of cells, using a highly invasive breast cancer MDA-MB435 as a model system. Our results demonstrate that overexpression of a kinase dead K299R PAK1 mutant leads to suppression of motile phenotypes as well as invasiveness of cells both in the absence or presence of exogenous heregulin-β1. In addition, these phenotypic changes were accompanied by a blockade of disassembly of focal adhesion points, stabilization of stress fibers, and enhanced cell spreading and were dependent on the presence of the kinase dead domain but independent of the presence of the Rac/cdc42 intact (Cdc42/Rac interactive binding) domain of PAK1. We also demonstrated that in K299R PAK1-expressing cells, F-actin filaments were stabilized by persistent co-localization with the actin-binding proteins tropomyosin and caldesmon. Extension of these studies to invasive breast cancer MDA-MB231 cells illustrated that conditional expression of kinase-defective K299R PAK1 was also accompanied by persistent cell spreading, multiple focal adhesion points, and reduced invasiveness. Furthermore, inhibition of PAK1 activity in breast cancer cells was associated with a reduction in c-Jun N-terminal kinase activity, inhibition of DNA binding activity of transcription factor AP-1, and suppression of in vivo transcription driven by AP-1 promoter (known to be involved in breast cancer invasion). These findings suggest that PAK1 downstream pathways have a role in the development and maintenance of invasive phenotypes in breast cancer cells.

Item Type:Article
Source:Copyright of this article belongs to American Society for Biochemistry and Molecular Biology.
ID Code:112871
Deposited On:08 May 2018 05:49
Last Modified:08 May 2018 05:49

Repository Staff Only: item control page