Syntheses and characterization of new vinyl-borylene complexes by the hydroboration of alkynes with [(μ3-BH)(Cp*RuCO)2(μ-CO)Fe(CO)3]

Bose, Shubhankar Kumar ; Roy, Dipak Kumar ; Shankhari, Pritam ; Yuvaraj, K. ; Mondal, Bijan ; Sikder, Amrita ; Ghosh, Sundargopal (2013) Syntheses and characterization of new vinyl-borylene complexes by the hydroboration of alkynes with [(μ3-BH)(Cp*RuCO)2(μ-CO)Fe(CO)3] Chemistry - A European Journal, 19 (7). pp. 2337-2343. ISSN 0947-6539

Full text not available from this repository.

Official URL: http://onlinelibrary.wiley.com/doi/10.1002/chem.20...

Related URL: http://dx.doi.org/10.1002/chem.201203627

Abstract

Room temperature photolysis of a triply-bridged borylene complex, [(μ3-BH)(Cp*RuCO)2(μ-CO)Fe(CO)3] (1 a; Cp*=C5Me5), in the presence of a series of alkynes, 1,2-diphenylethyne, 1-phenyl-1-propyne, and 2-butyne led to the isolation of unprecedented vinyl-borylene complexes (Z)-[(Cp*RuCO)2(μ-CO)B(CR)(CHR′)] (2: R, R′=Ph; 3: R=Me, R′=Ph; 4: R, R′=Me). This reaction permits a hydroboration of alkyne through an anti-Markovnikov addition. In stark contrast, in the presence of phenylacetylene, a metallacarborane, closo-[1,2-(Cp*Ru)2(μ-CO)2{Fe2(CO)5}-4-Ph-4,5-C2BH2] (5 a), is formed. A plausible mechanism has been proposed for the formation of vinyl-borylene complexes, which is supported by density functional theory (DFT) methods. Furthermore, the calculated 11B NMR chemical shifts accurately reflect the experimentally measured shifts. All the new compounds have been characterized in solution by mass spectrometry and IR, 1H, 11B, and 13C NMR spectroscopies and the structural types were unequivocally established by crystallographic analysis of 2, 5 a, and 5 b.

Item Type:Article
Source:Copyright of this article belongs to John Wiley & Sons, Inc.
ID Code:108849
Deposited On:31 Jan 2018 12:17
Last Modified:31 Jan 2018 12:17

Repository Staff Only: item control page