Reactivity of trypsin in reverse micelles: neglected role of aggregate size compared to water-pool components

Dasgupta, Antara ; Das, Debapratim ; Das, Prasanta Kumar (2005) Reactivity of trypsin in reverse micelles: neglected role of aggregate size compared to water-pool components Biochimie, 87 (12). pp. 1111-1119. ISSN 0300-9084

Full text not available from this repository.

Official URL: http://www.sciencedirect.com/science/article/pii/S...

Related URL: http://dx.doi.org/10.1016/j.biochi.2005.05.006

Abstract

The catalytic efficiency of trypsin was estimated in cationic reverse micelles as a function of the concentration of water-pool components and aggregate size to determine their independent influence on enzyme activity. The variation in the aggregate size/water-pool size was achieved by changing both the W0 (mole ratio of water to surfactant) and the headgroup area of surfactant through introduction of hydroxyethyl groups at the polar head. The local molar concentrations of water present inside the water-pool ([H2O]wp) of different cationic reverse micelles across varying W0 was estimated using a modified phenyl cation-trapping protocol. The [H2O]wp in cationic reverse micelles (surfactant/isooctane/n-hexanol/water) increases with W0 and attains the molarity of normal water beyond W0 = 40 irrespective of the nature of headgroup. Concurrently, the catalytic activity of trypsin compartmentalized within the water-pool increases with the increase in [H2O]wp upto an optimal W0 = 40 in organized solutions of any surfactant. The aggregate size (determined by static light scattering) also increases expectedly with W0 and noticeably with the area of the surfactant headgroup at similar W0. Since the enzyme activity rises both with the increase in water-pool size and [H2O]wp, trypsin's efficiency was compared with these two parameters across reverse micelles of varying surfactant headgroup size at similar W0 to determine their probable independent influence in regulating the enzyme activity. Noticeably, the efficiency of trypsin rises two to ninefold in spite of the [H2O]wp being distinctly lower in case of hydroxyethyl group substituted surfactants compared to cetyltrimethylammonium bromide w/o microemulsions at similar W0. Thus, the influence of the aggregate size possibly plays an important role alongwith the [H2O]wp in modulating the enzyme activity.

Item Type:Article
Source:Copyright of this article belongs to Elsevier Science.
Keywords:Aggregate Size; Chemical Trapping; Enzymes; Reverse Micelle; Surfactants
ID Code:108752
Deposited On:01 Feb 2018 11:23
Last Modified:01 Feb 2018 11:23

Repository Staff Only: item control page