One ferromagnetic and two antiferromagnetic dinuclear nickel(ii) complexes derived from a tridentate N,N,O-donor Schiff base ligand: a density functional study of magnetic coupling

Biswas, Rituparna ; Giri, Sanjib ; Saha, Shyamal K. ; Ghosh, Ashutosh (2012) One ferromagnetic and two antiferromagnetic dinuclear nickel(ii) complexes derived from a tridentate N,N,O-donor Schiff base ligand: a density functional study of magnetic coupling European Journal of Inorganic Chemistry, 2012 (17). pp. 2916-2927. ISSN 1434-1948

Full text not available from this repository.

Official URL: http://onlinelibrary.wiley.com/doi/10.1002/ejic.20...

Related URL: http://dx.doi.org/10.1002/ejic.201200028

Abstract

Three new dinuclear NiII complexes, [Ni2L2(NO3)2] (1), [Ni2L2(NO2)2] (2), and [Ni2L2(CH3COO) 2(H2O)] (3), have been synthesized by using a tridentate Schiff base ligand, 2-({[3-(dimethylamino)propyl]imino}methyl)phenol (HL), along with a nitrate, nitrite or acetate ion, respectively, as co-ligand. These three complexes were characterized by spectral analysis, X-ray crystallography and variable-temperature magnetic susceptibility measurements. The structural analyses revealed that the NiII ions are coordinated by the deprotonated chelating tridentate Schiff base and possess a distorted octahedral geometry in all three complexes. Complexes 1 and 2 are two di-μ 2-phenoxido-bridged species in which the nitrate and nitrite act as chelating co-ligands. However, in complex 3, in which the acetate anion is monodentate, an additional water bridge is present along with two μ 2-phenoxido bridges making the complex a face-sharing bi-octahedron. Magnetic susceptibility measurements indicate an antiferromagnetic intradimer interaction in complexes 1 and 2 with J values of –20.34(5) and –25.25(4) cm–1, respectively, whereas complex 3 shows a dominant ferromagnetic exchange coupling with J = 19.11(9) cm–1. DFT calculations were performed and the theoretically obtained J values of –19.99 (for 1), –24.19 (for 2) and 18.81 cm–1 (for 3) corroborate very well the experimental results. An attempt has also been made to correlate the effect of Ni•••Ni distances and bridging Ni–O–Ni angles on the coupling constants of the NiII complexes through DFT calculations. The relative energy calculations show that the diphenoxido-bridged complexes are stable at larger bridging angles and consequently the coupling is antiferromagnetic, whereas with an additional water bridge, the formation of complexes with the Ni–O–Ni bridging angle in the ferromagnetic region is energetically profitable.

Item Type:Article
Source:Copyright of this article belongs to John Wiley and Sons, Inc.
ID Code:108295
Deposited On:13 Oct 2017 12:44
Last Modified:13 Oct 2017 12:44

Repository Staff Only: item control page