Molecular dynamics simulations to investigate polymer–polymer and polymer–metal oxide interactions

Prathab, B. ; Subramanian, V. ; Aminabhavi, T.M. (2007) Molecular dynamics simulations to investigate polymer–polymer and polymer–metal oxide interactions Polymer, 48 (1). pp. 409-416. ISSN 0032-3861

Full text not available from this repository.

Official URL: http://www.sciencedirect.com/science/article/pii/S...

Related URL: http://dx.doi.org/10.1016/j.polymer.2006.11.014

Abstract

Polymer–polymer interactions in majority of engineering polymers are difficult to measure experimentally, since many polymers are usually insoluble in solvents, have high glass transition temperatures, and are sometimes poorly characterized. Therefore, applying molecular modeling strategies would be helpful in such situations in order to provide useful information, which would be difficult to obtain by other means. Poly(methyl methacrylate), PMMA, is a widely used engineering polymer that exists in a glassy state at room temperature. Therefore, we have selected PMMA to perform the molecular dynamics simulations to investigate its interfacial interaction with many other important polymers such as PAN, PC, PEO, PES, PMS, PU, PVAc, PVDF, PVME and PVP. Small molecular fragments of repeating units of these polymers were chosen for interaction studies, whose polymers and/or their blends with PMMA are used in many engineering applications. The COMPASS force field methodology was used in the present study for oligomers containing up to 10-mers for simulations to compute solubility parameters that are closely agreeable with the experimental data. Molecular dynamics (MD) simulations have also been performed to explore the adsorption behavior of MMA with several metal oxides (Al2O3, Fe2O3, SiO2 and TiO2), since such studies are important in developing polymer composites. Interfacial interactions between MMA and metal oxides have been calculated using the vibrational absorptions in order to identify the functional groups that might interact quite favorably with the PMMA.

Item Type:Article
Source:Copyright of this article belongs to Elsevier Science.
Keywords:Methyl Methacrylate; Metal Oxides; Interaction Energy
ID Code:107777
Deposited On:01 Dec 2017 12:18
Last Modified:01 Dec 2017 12:18

Repository Staff Only: item control page