Prediction of forbidden ultraviolet and visible emissions in comet 67P/Churyumov–Gerasimenko

Raghuram, Susarla ; Bhardwaj, Anil ; Galand, Marina (2016) Prediction of forbidden ultraviolet and visible emissions in comet 67P/Churyumov–Gerasimenko The Astrophysical Journal, 818 (2). Article ID 102. ISSN 1538-4357

Full text not available from this repository.

Official URL: http://iopscience.iop.org/article/10.3847/0004-637...

Related URL: http://dx.doi.org/10.3847/0004-637X/818/2/102

Abstract

Remote observation of spectroscopic emissions is a potential tool for the identification and quantification of various species in comets. The CO Cameron band (to trace CO2) and atomic oxygen emissions (to trace H2O and/or CO2, CO) have been used to probe neutral composition in the cometary coma. Using a coupled-chemistry-emission model, various excitation processes controlling the CO Cameron band and different atomic oxygen and atomic carbon emissions have been modeled in comet 67P/Churyumov–Gerasimenko at 1.29 AU (perihelion) and at 3 AU heliocentric distances, which is being explored by ESA's Rosetta mission. The intensities of the CO Cameron band, atomic oxygen, and atomic carbon emission lines as a function of projected distance are calculated for different CO and CO2 volume mixing ratios relative to water. Contributions of different excitation processes controlling these emissions are quantified. We assess how CO2 and/or CO volume mixing ratios with respect to H2O can be derived based on the observed intensities of the CO Cameron band, atomic oxygen, and atomic carbon emission lines. The results presented in this work serve as baseline calculations to understand the behavior of low out-gassing cometary coma and compare them with the higher gas production rate cases (e.g., comet Halley). Quantitative analysis of different excitation processes governing the spectroscopic emissions is essential to study the chemistry of inner coma and to derive neutral gas composition.

Item Type:Article
Source:Copyright of this article belongs to Institute of Physics.
ID Code:103244
Deposited On:28 Nov 2017 12:37
Last Modified:28 Nov 2017 12:37

Repository Staff Only: item control page