Intranasal curcumin ameliorates airway inflammation and obstruction by regulating MAPKinase activation (p38, Erk and JNK) and prostaglandin D2 release in murine model of asthma

Subhashini, . ; Chauhan, Preeti S. ; Dash, D. ; Paul, B. N. ; Singh, Rashmi (2016) Intranasal curcumin ameliorates airway inflammation and obstruction by regulating MAPKinase activation (p38, Erk and JNK) and prostaglandin D2 release in murine model of asthma International Immunopharmacology, 31 . pp. 200-206. ISSN 1567-5769

Full text not available from this repository.

Official URL: http://www.sciencedirect.com/science/article/pii/S...

Related URL: http://dx.doi.org/10.1016/j.intimp.2015.12.025

Abstract

Asthma, a multifactorial, chronic inflammatory disease encompasses multiple complex pathways releasing number of mediators by activated mast cells, eosinophils and T lymphocytes, leading to its severity. Presently available medications are associated with certain limitations, and hence, it is imperative to search for anti-inflammatory drug preferably targeting signaling cascades involved in inflammation thereby suppressing inflammatory mediators without any side effect. Curcumin, an anti-inflammatory molecule with potent anti-asthmatic potential has been found to suppress asthmatic features by inhibiting airway inflammation and bronchoconstriction if administered through nasal route. The present study provides new insight towards anti-asthmatic potential of intranasal curcumin at lower doses (2.5 and 5.0 mg/kg) in Balb/c mice sensitized and challenged with ovalbumin (OVA) which is effective in inhibiting airway inflammation. These investigations suggest that intranasal curcumin (2.5 and 5.0 mg/kg) regulates airway inflammation and airway obstruction mainly by modulating cytokine levels (IL-4, 5, IFN-ƴ and TNF-α) and sPLA2 activity thereby inhibiting PGD2 release and COX-2 expression. Further, the suppression of p38 MAPK, ERK 42/44 and JNK54/56 activation elucidate the mechanism behind the inhibitory role of intranasal curcumin in asthma progression. Thus, curcumin could be better alternative for the development of nasal formulations and inhalers in near future.

Item Type:Article
Source:Copyright of this article belongs to Elsevier Science.
Keywords:Prostaglandin D2; MAPK; Extracellular Regulated Kinases and c-Jun N-Terminal Kinases; Eosinophils
ID Code:100854
Deposited On:04 Feb 2017 17:26
Last Modified:04 Feb 2017 17:26

Repository Staff Only: item control page