Experimental deduction of In/Si(1 1 1) 2D phase diagram and ab initio DFT modeling of 2√3 phase

Jithesh, K. ; Govind, ; Waghmare, U. V. ; Shivaprasad, S. M. (2009) Experimental deduction of In/Si(1 1 1) 2D phase diagram and ab initio DFT modeling of 2√3 phase Applied Surface Science, 256 (2). pp. 348-352. ISSN 0169-4332

Full text not available from this repository.

Official URL: http://www.sciencedirect.com/science/article/pii/S...

Related URL: http://dx.doi.org/10.1016/j.apsusc.2009.04.123

Abstract

We have carried out adsorption and residual thermal desorption experiments of Indium on Si (1 1 1) 7×7 reconstructed surface, in the submonolayer regime, in Ultra High Vacuum (UHV) using in situ probes such as Auger Electron Spectroscopy (AES) and Low Energy Electron Diffraction (LEED). The coverage information from AES and the surface symmetry from LEED is used to draw a 2D phase diagram which characterizes each observed superstructural phases. The different superstructural phases observed are Si(1 1 1)7×7-In, Si(1 1 1)√3×√3R30°-In, Si(1 1 1)4×1-In, Si(1 1 1)2√3×2√3R30°-In and Si(1 1 1)√7×√3-In in characteristic temperature and coverage regime. In addition to the ⅓ ML, √3×√3-In phase, we observe two additional √3×√3-In phases at around 0.6 and 1 ML. Our careful residual thermal desorption studies yields the Si(1 1 1)2√3×2√3R30°-In phase which has infrequently appeared in the literature. We probe theoretically the structure of this phase according to the LEED structure and coverage measured by AES, assuming that the model for Si(1 1 1)2√3×2√3R30°-In is very proximal to the well established Si(1 1 1)2√3×2√3R30°-Sn phase, using ab initio calculation based on pseudopotentials and Density Functional Theory (DFT) to simulate an STM image of the system. Calculations show the differences in the atomic position and charge distribution in the Si(1 1 1)2√3×2√3R30°-In case.

Item Type:Article
Source:Copyright of this article belongs to Elsevier Science.
Keywords:Superstructural Phases; Auger Electron Spectroscopy; Low Energy Electron Diffraction; Density Functional Theory
ID Code:59437
Deposited On:06 Sep 2011 05:48
Last Modified:06 Sep 2011 05:48

Repository Staff Only: item control page